## Contents

Prefix/Index ..... 1
Square/Circular Loaded Areas - INTERNAL. ..... 2
Square/Circular Loaded Areas - EDGE ..... 3
Square/Circular Loaded Areas - INTERNAL CORNER ..... 4
Square/Circular Loaded Areas - EXTERNAL CORNER ..... 5
Rectangular Loaded Areas - INTERNAL ..... 6
Rectangular Loaded Areas - EDGE ..... 7
Rectangular Loaded Areas - INTERNAL CORNER ..... 8
Rectangular Loaded Areas - EXTERNAL CORNER ..... 9
Design Guidance for Holes in Slabs ..... 10

| Symbols | Units | Description |
| :---: | :---: | :---: |
| a | mm | Width of column or pile. |
| $A_{s v}$ | $m m^{2} / \mathrm{m}$ | Area of shear reinforcement. |
| $b$ | mm | Breadth of column or pile. |
| C | $m m$ | Dimension to edge of slab from face of column or pile (see diagrams). |
| $d$ | mm | Effective depth. |
| $h$ | mm | Overall slab depth. |
| $e$ | mm | Dimension to edge of slab from face of column or pile (see diagrams). |
| $f_{c u}$ | $N / m m^{2}$ | Characteristic strength of concrete. |
| $f_{y v}$ | $N / m m^{2}$ | Characteristic strength of shear reinforcement. (not to be taken more than $500 \mathrm{~N} / \mathrm{mm}^{2}$ ) |
| $M_{t}$ | $\mathrm{kN} / \mathrm{m}$ | Design moment transferred between slab and column at the connection. |
| $u_{0}$ | mm | Effective length of the perimeter which touches a loaded area. |
| $u_{1}, u_{2} \ldots$. | mm | Effective length of the perimeter. |
| $u_{n}$ | mm | The effective perimeter where $v<=v_{c}$ |
| $v$ | $N / m m^{2}$ | Design shear stress. |
| $v_{c}$ | $N / m m^{2}$ | Design concrete shear stress. |
| $V_{\text {eff }}$ | kN | Design effective shear including allowance for moment transfer. |
| $V_{t}$ | kN | Design shear transferred to column |
| $X$ | mm | The length of the side of the perimeter considered parallel to axis of bending. |
|  |  | Note. $X$ is always taken as the length of the side of $u_{1}$ at $1.5 d$ from the column or pile face for each perimeter. When calculating the direct shear with a moment at the column or pile face, $X$ can be calculated as the length of the side of $u_{0}$ as worst case, but it is normal practice to use 1.5 d as stated. |

Square/Circular Loaded Areas - INTERNAL



## Square/Circular Loaded Areas - EDGE



Reference to
BS8110 part1

Figure 3.14
3.7.7.2

Figure 3.15
Design at face
Equation 27
3.7.6.4 \& 3.7.7.2

Design at Perimeters
3.7.7.3

Table 3.8

Equation 28
3.7.7.4
3.7.7.5

Equation 29a
Equation 29b

Figure 3.17
$X y=a+c+1.5 d$ or $X x=a+(2 \times 1.5 d) \quad$ (required only when there is a moment in the slab) Square column $u_{0}=a \times 3$ or $u_{0}=a \times 3+c \times 2$ Whichever is the smallest.

Circular column $u_{0}=a p$ or when there is a negative value for ' $c$ ' $u_{0}=a p+(c p)$. use $X$ as $X x$ or $X y$ as appropriate
$V_{\text {eff }}=1.4 V_{t}$ or $1.25 V_{t} \quad$ (direct shear) or $\quad V_{\text {eff }}=V_{t}\left(1.25+1.5 M_{t} /\left(V_{t} x X\right)\right) \quad$ (moment present) $v=V_{\text {eff }} /\left(u_{0} x \quad d\right)$
Check $v$ is not greater than $0.8 \times \sqrt{ } \square f_{c u}$ or $5 \mathrm{~N} / \mathrm{mm}^{2}$
fcu should not to be taken greater than $40 \mathrm{~N} / \mathrm{mm}^{2}$
Design each perimeter $u_{1}, u_{2}, \ldots u_{n}$ - starting 1.5d from the column/pile face and at $0.75 d$ thereafter until $v_{c}$ is greater than or equal to $v$.
$u_{1}=(1.5 d \times 4)+3 a+2 c . . u_{2}=(2.25 d \times 4)+3 a+2 c . . u_{3}=(3 d \times 2) \times 4+3 a+2 c . . \&$ so on
$100 A_{s} /(1000 \times d) \quad$ Not to be taken more than 3
400 /d Not to be taken less than 1
$v_{c}=0.79 \times\left(\left(\left(100 A_{s} /(1000 \times d)\right)^{1 / 3} \times(400 / d)^{1 / 4}\right) / 1.25\right) \times\left(f_{c u} / 25\right)^{1 / 3}$
$v=V_{\text {eff }} /\left(\begin{array}{lll}u_{1} & x & d\end{array}\right)$
$v^{\prime}<' v_{c}{ }^{\prime}>N^{\prime}$ No Shear reinforcement is required
$' v$ ' $>$ ' $2 v_{c}$ ' $>$ Redesign using: deeper slab, increase grade or top reinforcement.
$' v$ ' $\leq$ ' $1.6 v_{c}$ ' $>A_{s v}=\left(v-v_{c}\right) u_{1} d /\left(0.87 f_{y v}\right) \quad$ Note: $\operatorname{Sin} 90^{\circ}=1$ for vertical bars
$' 1.6 v c^{\prime}<' v$ ' $\leq ' 2 v_{c}$ ' $>A_{s v}=5\left(0.7 v-v_{c}\right) u_{1} d /\left(0.87 f_{y v}\right) \quad$ Note: $\operatorname{Sin} 90^{\circ}=1$ for vertical bars

Check against minimum Steel $=\left(0.4 u_{1} d\right) /\left(0.87 f_{y v}\right) . .$. (altering $u_{1}$ to $u_{2}$, etc $\ldots$. .accordingly)
Note : 'Asv' is for TWO perimeters of studs/links at a maximum of 0.75 d centres.
The first perimeter of studs located at $0.5 d$ should contain $40 \%$ of the calculated area of the reinforcement required in $u_{1}$

Repeat 'design at perimeters'... until 'v' < ' $v_{c}$ ' hence no more reinforcement is required.





## Reference to <br> BS8110 part1

Cantilever edges ( $c, d$ ) are restricted to a maximum of 3d, lengths greater than 3d are ignored.
$d=h$ - top cover - T1 Bars size / 2 - T2 Bars size / 2(average in both directions)
Figure 3.14
$X y=a+c+1.5 d$ or $X x=a+e+1.5 d \quad$ (required only when there is a moment in the slab)

Circular column $u_{0}=2 / 3 \times$ ap or when there is a negative value for ' $c$ ' or ' $e$ ' use $u_{0}=2 / 3 \times a p+(c p / 2) \quad u_{0}=2 / 3 \times a p+(e p / 2) \quad u_{0}=2 / 3 \times a p+(c p / 2)+(e p / 2) \quad$ accordingly

Figure 3.15

## Design at face

Equation 27
3.7.6.4 \& 3.7.7.2 use $X$ as $X x$ or $X y$ as appropriate
$V_{\text {eff }}=1.25 V_{t} \quad$ (direct shear) or $V_{\text {eff }}=V_{t}\left(1.25+1.5 M_{t} /\left(V_{t} x X\right)\right) \quad$ (moment present) $v=V_{\text {eff }} /\left(u_{0} \times x d\right)$

Check $v$ is not greater than $0.8 \times \sqrt{ } \square f_{c u}$ or $5 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{c u}$ should not to be taken greater than $40 \mathrm{~N} / \mathrm{mm}^{2}$
Design at
Perimeters
3.7.7.3

Table 3.8

Equation 28
3.7.7.4
3.7.7.5

Equation 29a
Equation 29b

Figure 3.17
Check against minimum Steel $=\left(0.4 u_{1} d\right) /\left(0.87 f_{y v}\right) \ldots$.... (altering $u_{1}$ to $u_{2}$, etc $\ldots$...accordingly)
Note : ' $A_{s v}$ ' is for TWO perimeters of studs/links at a maximum of $0.75 d$ centres.
The first perimeter of studs located at 0.5 d should contain $40 \%$ of the calculated area of the reinforcement required in $u_{1}$.

Repeat 'design at perimeters'... until ' $v$ ' < ' $v_{c}$ ' hence no more reinforcement is required.

Figure 3.15
Design at face
Equation 27
3.7.6.4 \& 3.7.7.2
$\frac{\text { Design at }}{\text { Perimeters }}$
3.7.7.3

Table 3.8

Equation 28
3.7.7.4
3.7.7.5

Equation 29a
Equation 29b
Figure 3.17

Cantilever edges (c,e) are restricted to a maximum of 1.5d, lengths greater are ignored.
$d=h-$ top cover - T1 Bars size / $2-T 2$ Bars size / 2(average in both directions)
$X y=a+3 d$ or $X x=a+3 d \quad$ (required only when there is a moment in the slab)
Square column $u_{0}=4 a+$ any negative value for ' $c$ ' or ' $e$ '.
Circular column $u_{0}=a p+$ any negative value for 'c' or 'e' using the formula ( $\mathrm{pa} / 2 \times \mathrm{c} / \mathrm{a}$ ) or ( $\mathrm{pa} / 2$ x e/a) accordingly
use $X$ as $X X$ or $X y$ as appropriate
$V_{\text {eff }}=1.25 V_{t} \quad$ (direct shear) or $\quad V_{\text {eff }}=V_{t}\left(1.25+1.5 M_{t} /\left(V_{t} \times X\right)\right) \quad$ (moment present)
$v=V_{\text {eff }} /\left(\begin{array}{lll}u_{0} & x & d\end{array}\right)$
Check $v$ is not greater than $0.8 \times \sqrt{ } \square f_{c u}$ or $5 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{c u}$ should not to be taken greater than $40 \mathrm{~N} / \mathrm{mm}^{2}$
Design each perimeter u1, u2, ...un - starting 1.5d from the column/pile face and at 0.75d thereafter until vc is greater than or equal to $v$.
$u 1=(1.5 d \times 6)+4 a+c+e . . u 2=(2.25 d \times 6)+4 a+c+e . . u 3=(3 d \times 6)+4 a+c+e . . \&$ so on Check u1, u2, etc.. Against a complete enclosed perimeter i.e. $u 1=((1.5 d \times 2)+a) \times 4$ 100As / ( $1000 \times d$ ) Not to be taken more than 3 400 /d Not to be taken less than 1
$v c=0.79 \times(((100 A s /(1000 \times d)) 1 / 3 \times(400 / d) 1 / 4) / 1.25) \times(f c u / 25) 1 / 3$ $v=$ Veff $/\left(\begin{array}{ll}u 1 & x d\end{array}\right)$
$v^{\prime}<' v_{c}{ }^{\prime}>\quad$ No Shear reinforcement is required
' $v$ ' > ' $2 v_{c}$ ' $>$ Redesign using: deeper slab, increase grade or top reinforcement. $' v$ ' $\leq$ ' $1.6 v_{c}$ ' $>A_{s v}=\left(v-v_{c}\right) u_{1} d /\left(0.87 f_{y v}\right) \quad$ Note: $\operatorname{Sin} 90^{\circ}=1$ for vertical bars $' 1.6 v c$ ' $<' v$ ' $\leq ' 2 v_{c}{ }^{\prime}>A_{s v}=5\left(0.7 v-v_{c}\right) u_{1} d /\left(0.87 f_{y v}\right) \quad$ Note: $\operatorname{Sin} 90^{\circ}=1$ for vertical bars Check against minimum Steel $=\left(0.4 u_{1} d\right) /\left(0.87 f_{y v}\right) \ldots$ (altering $u_{1}$ to $u_{2}$, etc $\ldots$. .accordingly)

Note: ' $A_{s v}$ ' is for TWO perimeters of studs/links at a maximum of $0.75 d$ centres.
The first perimeter of studs located at $0.5 d$ should contain $40 \%$ of the calculated area of the reinforcement required in $u_{1}$.
Repeat 'design at perimeters'... until 'v' < ' $v_{c}$ ' hence no more reinforcement is required.

Rectangular Loaded Areas - INTERNAL



Shear Design to BS8110
Rectangular Loaded Areas - EDGE


Reference to
BS8110 part1
BS8110 part1

Figure 3.14
3.7.7.2

Figure 3.15
Design at face
Equation 27
3.7.6.4 \& 3.7.7.2

Design at Perimeters
3.7.7.3

Table 3.8

Equation 28
3.7.7.4
3.7.7.5

Equation 29a
Equation 29b
Figure 3.17

> | Cantilever edges (c) are restricted to a maximum of 3d, lengths greater than 3d are ignored. |
| :--- |
| $d=h-$ top cover $-T 1$ Bars size $/ 2-T 2$ Bars size / 2(average in both directions) |
| $X_{y=b+c+1.5 d \text { or } X x=a+(2 \times 1.5 d) \quad \text { (required only when there is a moment in the slab) }}^{u_{0}=a+2 b \text { or } u_{0}=a+2 b+2 c \quad \text { Whichever is the smallest. }}$ |

use $X$ as $X X$ or $X y$ as appropriate
$V_{\text {eff }}=1.4 V_{t}$ or $1.25 V_{t}$ (direct shear) or $V_{\text {eff }}=V_{t}\left(1.25+1.5 M_{t} /\left(V_{t} \times X\right)\right) \quad$ (moment present) $v=V_{\text {eff }} /\left(\begin{array}{lll}u_{0} & x & d\end{array}\right)$
Check $v$ is not greater than $0.8 \times \sqrt{ } \square \square f_{c u}$ or $5 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{c u}$ should not to be taken greater than $40 \mathrm{~N} / \mathrm{mm}^{2}$
Design each perimeter $u_{1}, u_{2}, \ldots u_{n}$ - starting $1.5 d$ from the column/pile face and at $0.75 d$ thereafter until $v_{c}$ is greater than or equal to $v$.
$u_{1}=(1.5 d \times 4)+a+2 b+2 c . . u_{2}=(2.25 d \times 4)+a+2 b+2 c . . u_{3}=(3 d \times 2) \times 4+a+2 b+2 c . . \&$ so on $100 A_{s} /(1000 \times d) \quad$ Not to be taken more than 3
400 /d Not to be taken less than 1
$v_{c}=0.79 \times\left(\left(\left(100 A_{s} /(1000 \times d)\right)^{1 / 3} \times(400 / d)^{1 / 4}\right) / 1.25\right) \times\left(f_{c u} / 25\right)^{1 / 3}$
$v=V_{\text {eff }} /\left(u_{1} \times d\right)$
$v^{\prime}<' v_{c^{\prime}}>{ }^{\prime}>N^{\prime}$ Shear reinforcement is required
$' v$ ' > '2vc ${ }^{\prime}>$ Redesign using: deeper slab, increase grade or top reinforcement.
$' v$ ' $\leq$ ' $1.6 v_{c}$ ' $>A_{s v}=\left(v-v_{c}\right) u_{1} d /\left(0.87 f_{y v}\right) \quad$ Note: $\operatorname{Sin} 90^{\circ}=1$ for vertical bars
${ }^{\prime} 1.6 v c^{\prime}<' v$ ' $\leq ' 2 v_{c}{ }^{\prime}>A_{s v}=5\left(0.7 v-v_{c}\right) u_{1} d /\left(0.87 f_{y v}\right) \quad$ Note: $\operatorname{Sin} 90^{\circ}=1$ for vertical bars
Check against minimum Steel $=\left(0.4 u_{1} d\right) /\left(0.87 f_{y v}\right) \ldots$ (altering $u_{1}$ to $u_{2}$, etc $\ldots$. accordingly)
Note: 'Asv' is for TWO perimeters of studs/links at a maximum of $0.75 d$ centres.
The first perimeter of studs located at $0.5 d$ should contain $40 \%$ of the calculated area of the reinforcement required in $u_{1}$.

Repeat 'design at perimeters'... until ' $v$ ' < ' $v_{c}$ ' hence no more reinforcement is required.

## Rectangular Loaded Areas - INTERNAL CORNER



Figure 3.14
3.7.7.2

Figure 3.15
Design at face
Equation 27
3.7.6.4 \& 3.7.7.2

## Design at <br> Perimeters

3.7.7.3

Table 3.8

Equation 28

## Cantilever edges (c) are restricted to a maximum of 3d, lengths greater than 3d are ignored.

$d=h-$ top cover $-T 1$ Bars size / 2-T2 Bars size / 2(average in both directions)

## Rectangular Loaded Areas - EXTERNAL CORNER



| Reference to | Cantilever edges (c,e) are restricted to a maximum of 1.5d, lengths greater are ignored. |
| :---: | :---: |
| BS8110 part1 | $d=h-$ top cover - T1 Bars size / 2 - T2 Bars size / 2(average in both directions) |
| Figure 3.14 | $X y=b+3 d$ or $X x=a+3 d \quad$ (required only when there is a moment in the slab) |
| 3.7.7.2 | $u_{0}=2 a+2 b+$ any negative value for 'c' or 'e'. |
| Figure 3.15 | use $X$ as $X X$ or $X y$ as appropriate |
| Design at face | $V_{\text {eff }}=1.25 V_{t} \quad$ (direct shear) or $\quad V_{\text {eff }}=V_{t}\left(1.25+1.5 M_{t} /\left(V_{t} \times X\right)\right) \quad$ (moment present) |
| Equation 27 <br> 3.7.6.4 \& 3.7.7.2 | $v=V_{\text {eff }} /\left(\begin{array}{l}u_{0}\end{array} x d\right)$ |
|  | Check $v$ is not greater than $0.8 \times \sqrt{ } \square \square f_{c u}$ or $5 \mathrm{~N} / \mathrm{mm}^{2}$ $f_{c u}$ should not to be taken greater than $40 \mathrm{~N} / \mathrm{mm}^{2}$ |
| $\begin{aligned} & \text { Design at } \\ & \text { Perimeters } \end{aligned}$ | Design each perimeter u1, u2, ...un - starting 1.5d from the column/pile face and at 0.75d thereafter until vc is greater than or equal to $v$. |
| 3.7.7.3 | $u 1=(1.5 d \times 6)+2 a+2 b+c+e . . u 2=(2.25 d x 6)+2 a+2 b+c+e . . u 3=(3 d x 6)+2 a+2 b+c+e . . \&$ so on |
|  | Check u1, u2, etc.. Against a complete enclosed perimeter i.e. $u 1=((1.5 d \times 2) \times 4+2 a+2 b)$ |
| Table 3.8 | 100As / ( $1000 \times$ d ) Not to be taken more than 3 |
|  | 400 /d Not to be taken less than 1 |
|  | $v c=0.79 \times(($ (100As / (1000 $\times$ d $)$ ) $1 / 3 \times(400 / d) 1 / 4) / 1.25) \times(f c u / 25) 1 / 3$ |
| Equation 28 | $v=$ Veff $/\left(\begin{array}{lll}u 1 & x\end{array}\right)$ |
| 3.7.7.4 | $v^{\prime}\left\langle\right.$ ' $v_{C}$ ' $>$ No Shear reinforcement is required |
| 3.7.7.5 | ' $v$ '> '2 $v_{c}$ ' $>$ Redesign using: deeper slab, increase grade or top reinforcement. |
| Equation 29a | $' v$ ' ${ }^{\prime} 1.6 v_{c}$ ' $>A_{s v}=\left(v-v_{c}\right) u_{1} d /\left(0.87 f_{y v}\right) \quad$ Note: Sin $900=1$ for vertical bars |
| Equation 29b | ${ }^{\prime} 1.6 v c^{\prime}<' v$ ' $\leq ' 2 v_{c}{ }^{\prime}>A_{s v}=5\left(0.7 v-v_{c}\right) u_{1} d /\left(0.87 f_{y v}\right) \quad$ Note: Sin $90{ }^{\circ}=1$ for vertical bars |
| Figure 3.17 | Check against minimum Steel $=\left(0.4 u_{1} d\right) /\left(0.87 f_{y v}\right) \ldots$ (altering $u_{1}$ to $u_{2}$, etc $\ldots$. accordingly) |
|  | Note : 'Ass' is for TWO perimeters of studs/links at a maximum of $0.75 d$ centres. |
|  | The first perimeter of studs located at $0.5 d$ should contain $40 \%$ of the calculated area of the reinforcement required in $u_{1}$. |
|  | Repeat 'design at perimeters'... until ' $v$ ' < ' $v_{c}$ ' hence no more reinforcement is required. |

Shear Design to BS8110

Design Guidance for Holes in Slabs


## BS8110 part 11997 3.7.7.6 Modification of effective perimeter to allow for holes.

When a hole or holes are within $6 d$ from the face of the column/pile, part of the perimeter that is enclosed by the radial projections (dead zone) from the centre of the column/pile to the edges of the hole/s are considered ineffective.
Each perimeter (uo, u1, etc..) must be reduced accordingly and any studs/reinforcement ignored when calculating the area of steel required/used, care should be taken when repositioning rails to miss holes that it has not moved into another perimeter without adjusting the calculation likewise.

A single hole can be ignored if its largest width is less than the smaller of:

1. One-quarter of the column side
2. Half the slab depth

It may be desirable or quicker to consider a worst-case design ignoring the part of the slab with the hole/s and design as an edge or corner condition, supplying additional rails to the disregarded area of slab that will be receiving load from the slab.


Alternatively, a percentage reduction of the perimeters can be used, but care must be taken, as the percentage will vary due to the position around the column/pile and with the distance between the column/pile to the hole.

