

Contents

Prefix/Index	1
Square/Circular Loaded Areas – INTERNAL. Square/Circular Loaded Areas – EDGE Square/Circular Loaded Areas – INTERNAL CORNER. Square/Circular Loaded Areas – EXTERNAL CORNER.	4
Rectangular Loaded Areas – INTERNAL. Rectangular Loaded Areas – EDGE Rectangular Loaded Areas – INTERNAL CORNER Rectangular Loaded Areas – EXTERNAL CORNER	6 7 8 9
Design Guidance for Holes in Slabs.	10

Symbols	Units	Description
а	mm	Width of column or pile.
A_{sv}	mm²/m	Area of shear reinforcement.
b	mm	Breadth of column or pile.
С	mm	Dimension to edge of slab from face of column or pile (see diagrams).
d	mm	Effective depth.
h	mm	Overall slab depth.
е	mm	Dimension to edge of slab from face of column or pile (see diagrams).
fcu	N/mm ²	Characteristic strength of concrete.
f_{yv}	N/mm²	Characteristic strength of shear reinforcement. (not to be taken more than 500 N/mm ²)
M_t	kN/m	Design moment transferred between slab and column at the connection.
Uo	mm	Effective length of the perimeter which touches a loaded area.
U 1 , U 2	mm	Effective length of the perimeter.
Un	mm	The effective perimeter where $v <= v_c$
v	N/mm ²	Design shear stress.
v_c	N/mm²	Design concrete shear stress.
V_{eff}	kN	Design effective shear including allowance for moment transfer.
V _t	kN	Design shear transferred to column
X	mm	The length of the side of the perimeter considered parallel to axis of bending.
		Note. X is always taken as the length of the side of u_1 at 1.5d from the column or pile face for each perimeter. When calculating the direct shear with a moment at the column or pile face, X can be calculated as the length of the side of u_0 as worst case, but it is normal practice to use 1.5d as stated.

01-2022

Square/Circular Loaded Areas - EDGE

Reference to	Cantilever edges (c) are restricted to a maximum of 3d, lengths greater than 3d are ignored.
BS8110 part1	d = h - top cover - T1 Bars size / 2 - T2 Bars size / 2(average in both directions)
	$Xy = a + c + 1.5d$ or $Xx = a + (2 \times 1.5d)$ (required only when there is a moment in the slab)
Figure 3.14	Square column $u_0 = a \times 3$ or $u_0 = a \times 3 + c \times 2$ Whichever is the smallest.
3.7.7.2	Circular column $u_0 = ap$ or when there is a negative value for 'c' $u_0 = ap + (cp)$.
	use X as Xx or Xy as appropriate
Figure 3.15	
Design at face	$V_{eff} = 1.4V_t$ or $1.25V_t$ (direct shear) or $V_{eff} = V_t (1.25 + 1.5M_t / (V_t \times X))$ (moment present)
Equation 27	$v = V_{eff} / (u_0 \times d)$
3.7.6.4 & 3.7.7.2	Check v is not greater than $0.8 \times \sqrt{\Box \Box f_{cu}}$ or 5 N/mm ²
3.7.0.4 & 3.7.7.2	f _{cu} should not to be taken greater than 40 N/mm ²
<u>Design at</u> <u>Perimeters</u>	Design each perimeter u_1 , u_2 , u_n - starting 1.5d from the column/pile face and at 0.75d thereafter until v_c is greater than or equal to v.
3.7.7.3	$u_1 = (1.5d \times 4) + 3a + 2c \dots u_2 = (2.25d \times 4) + 3a + 2c \dots u_3 = (3d \times 2)\times 4 + 3a + 2c \dots $ so on
Table 3.8	$100A_s / (1000 \text{ x d})$ Not to be taken more than 3
	400 / d Not to be taken less than 1
	$v_c = 0.79 \ x \ (\ (\ 100 A_s \ / \ 1000 \ x \ d \) \)^{1/3} \ x \ (400 \ / \ d \)^{1/4} \) \ / \ 1.25 \) \ x \ (f_{cu} \ / 25)^{1/3}$
Equation 28	$v = V_{eff} / (u_1 \times d)$
3.7.7.4	v' < 'vc' > No Shear reinforcement is required
3.7.7.5	$v' > 2v_c'$ > Redesign using: deeper slab, increase grade or top reinforcement.
Equation 29a	$v' \le 1.6v_c'$ > $A_{sv} = (v - v_c) u_1 d / (0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
Equation 29b	'1.6vc' < 'v' ≤ '2v _c ' → $A_{sv} = 5(0.7 v - v_c) u_1 d / (0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
Figure 3.17	Check against minimum Steel = $(0.4 u_1 d) / (0.87 f_{yv}) \dots$ (altering u_1 to u_2 , etcaccordingly)
	Note : 'A _{sv} ' is for TWO perimeters of studs/links at a maximum of 0.75d centres.
	The first perimeter of studs located at 0.5d should contain 40% of the calculated area of the reinforcement required in u_1
	Repeat 'design at perimeters' until 'v' < ' v_c ' hence no more reinforcement is required.

Square/Circular Loaded Areas – INTERNAL CORNER

X-axis POSITIVE 'c' VALUE c		Y-axis VALUE
	Reference to BS8110 part1	Cantilever edges (c,d) are restricted to a maximum of 3d, lengths greater than 3d are ignored.
	·	$d = h - top \ cover - T1 \ Bars \ size / 2 - T2 \ Bars \ size / 2(average in both directions)$
	Figure 3.14	Xy = a + c + 1.5d or $Xx = a + e + 1.5d$ (required only when there is a moment in the slab) Square column $u_0 = 2a + any$ negative value for 'c' or 'e'.
	3.7.7.2	Circular column $u_0 = 2/3 \times ap$ or when there is a negative value for 'c' or 'e' use
		$u_0 = 2/3 \times ap + (cp/2)$ $u_0 = 2/3 \times ap + (ep/2)$ $u_0 = 2/3 \times ap + (cp/2) + (ep/2)$ accordingly
	Figure 3.15	$u_0 = 2/3 \times ap + (cp/2)$ $u_0 = 2/3 \times ap + (cp/2)$ $u_0 = 2/3 \times ap + (cp/2) + (cp/2)$ accordingly use X as Xx or Xy as appropriate
	Design at face	
	Equation 27	$V_{eff} = 1.25V_t$ (direct shear) or $V_{eff} = V_t (1.25 + 1.5M_t / (V_t \times X))$ (moment present) $v = V_{eff} / (u_0 \times d)$
	3.7.6.4 & 3.7.7.2	Check v is not greater than $0.8 \times \sqrt{\Box} \Box f_{cu}$ or 5 N/mm^2
		f_{cu} should not to be taken greater than 40 N/mm ²
-	<u>Design at</u> <u>Perimeters</u>	Design each perimeter u_1 , u_2 , u_n - starting 1.5d from the column/pile face and at 0.75d thereafter until v_c is greater than or equal to v.
	3.7.7.3	$u_1 = (1.5d \times 2) + 2a + c + e \dots u_2 = (2.25d \times 2) + 2a + c + e \dots u_3 = (3d \times 2) + 2a + c + e \dots & so on$
	Table 3.8	100As / (1000 x d) Not to be taken more than 3
		400 / d Not to be taken less than 1
		$v_c = 0.79 x (((100 A_s / (1000 x d)))^{1/3} x (400 / d)^{1/4}) / 1.25) x (f_{cu}/25)^{1/3}$
	Equation 28	$v = V_{eff} / (u_1 \times d)$
	3.7.7.4	$v' < v_{c'}$ > No Shear reinforcement is required
	3.7.7.5	$v' > 2v_c'$ > Redesign using: deeper slab, increase grade or top reinforcement.
	Equation 29a	$v' \le 1.6v_c'$ > $A_{sv} = (v - v_c) u_1 d / (0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
	Equation 29b	$(1.6vc' < v' \le 2v_c) > A_{sv} = 5(0.7 v - v_c) u_1 d / (0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
	Figure 3.17	Check against minimum Steel = $(0.4 u_1 d) / (0.87 f_{yv}) \dots$ (altering u_1 to u_2 , etcaccordingly)
		Note : A_{sv} is for TWO perimeters of studs/links at a maximum of 0.75d centres.
		The first perimeter of studs located at 0.5d should contain 40% of the calculated area of the reinforcement required in u_1 .
		Repeat 'design at perimeters' until 'v' < ' v_c ' hence no more reinforcement is required.

Square/Circular Loaded Areas - EXTERNAL CORNER POSITIVE POSITIVI c' VALUI NEGATIVI 'c' VALUE NEGATIVI 'c' VALUE POSITIVE POSITIVE 'e' VALUE NEGATIVE 'e' VALUE NEGATIVE 'e' VALUE uı Reference to Cantilever edges (c,e) are restricted to a maximum of 1.5d, lengths greater are ignored. BS8110 part1 d = h - top cover - T1 Bars size /2 - T2 Bars size /2(average in both directions)Figure 3.14 Xy = a + 3d or Xx = a + 3d (required only when there is a moment in the slab) Square column $u_0 = 4a + any$ negative value for 'c' or 'e'. 3.7.7.2 Circular column $u_0 = ap + any$ negative value for 'c' or 'e' using the formula ($pa/2 \times c/a$) or (pa/2x e/a) accordingly use X as Xx or Xy as appropriate Figure 3.15 $V_{\text{eff}} = 1.25V_t$ (direct shear) or $V_{\text{eff}} = V_t (1.25 + 1.5M_t / (V_t \times X))$ (moment present) Design at face $v = V_{eff} / (u_0 \times d)$ Equation 27 Check v is not greater than $0.8 \times \sqrt{\Box} \Box f_{cu}$ or 5 N/mm^2 3.7.6.4 & 3.7.7.2 fcu should not to be taken greater than 40 N/mm² Design each perimeter u1, u2, ...un - starting 1.5d from the column/pile face and at 0.75d thereafter <u>Design at</u> Perimeters until vc is greater than or equal to v. 3.7.7.3 $u1 = (1.5d \times 6) + 4a + c + e$.. $u2 = (2.25d \times 6) + 4a + c + e$.. $u3 = (3d \times 6) + 4a + c + e$..& so on Check u1, u2, etc.. Against a complete enclosed perimeter i.e. $u1 = ((1.5d \times 2) + a) \times 4$ Table 3.8 100As / (1000 x d) Not to be taken more than 3 400/d Not to be taken less than 1 vc = 0.79 x (((100 As / (1000 x d))) 1/3 x (400 / d)) 1/4) / 1.25) x (fcu / 25) 1/3Equation 28 v = Veff / (u1 x d)3.7.7.4 $V' < V_{c'}$ No Shear reinforcement is required \triangleright 3.7.7.5 $v' > 2v_c'$ Redesign using: deeper slab, increase grade or top reinforcement. $A_{sv} = (v - v_c) u_1 d / (0.87 f_{yv})$ Equation 29a \triangleright Note: Sin $90^{\circ} = 1$ for vertical bars

Equation 29b

Figure 3.17

 $v' \leq 1.6v_c'$

Note :

 $(1.6vc' < v' \le 2v_c)$

reinforcement required in u1.

 \geq

Check against minimum Steel = $(0.4 u_1 d) / (0.87 f_{yv}) \dots$ (altering u_1 to u_2 , etc...accordingly) 'Asv' is for TWO perimeters of studs/links at a maximum of 0.75d centres.

The first perimeter of studs located at 0.5d should contain 40% of the calculated area of the

Repeat 'design at perimeters'... until 'v' < ' v_c ' hence no more reinforcement is required.

 $A_{sv} = 5(0.7 v - v_c) u_1 d / (0.87 f_{yv})$ Note: Sin 90° = 1 for vertical bars

Rectangular Loaded Areas - INTERNAL

Defenses (s	E - Destance de la constance de la constitución d
Reference to BS8110 part1	For Rectangular loaded areas with a length exceeding four times its thickness, should be considered as a wall receiving localised punching shear at its ends, see section on Wall/Blade Column
1.3.4.1	
	d = h - top cover - T1 Bars size / 2 - T2 Bars size / 2(average in both directions)
	$Xy = b + (2 \times 1.5d)$ or $Xx = a + (2 \times 1.5d)$ (required only when there is a moment in the slab)
Figure 3.14	$u_0 = 2a + 2b$ use X as Xx or Xy as appropriate
3.7.7.2	$V_{eff} = 1.15V_t$ (direct shear) or $V_{eff} = V_t (1 + 1.5M_t / (V_t \times X))$ (moment present)
Figure 3.15	$v = V_{eff} / (u_0 \times d)$
<u>Design at face</u>	Check v is not greater than 0.8 x $\sqrt{\Box}$ \Box f _{cu} or 5 N/mm ²
Equation 27	f _{cu} should not to be taken greater than 40 N/mm ²
3.7.6.4 & 3.7.7.2	
<u>Design at</u> <u>Perimeters</u>	Design each perimeter u_1 , u_2 , u_n - starting 1.5d from the column/pile face and at 0.75d thereafter until v_c is greater than or equal to v.
3.7.7.3	$u_1 = (1.5d x^2)x^4 + (a + b)x^2$ $u_2 = (2.25d x^2)x^4 + (a + b)x^2$ $u_3 = (3dx^2)x^4 + (a + b)x^2$ & so on
Table 3.8	$100A_s / (1000 \text{ x d})$ Not to be taken more than 3
	400 / d Not to be taken less than 1
	$v_{\rm c} = 0.79 \ x \ (\ (\ 100 A_{\rm s} \ / \ (\ 1000 \ x \ d \) \)^{1/3} \ x \ (400 \ / \ d \)^{1/4} \) \ / \ 1.25 \) \ x \ (f_{cu} \ / 25)^{1/3}$
Equation 28	$v = V_{eff} / (u_1 \times d)$
3.7.7.4	$v' < v_{c'}$ > No Shear reinforcement is required
3.7.7.5	$v' > 2v_c'$ > Redesign using: deeper slab, increase grade or top reinforcement.
Equation 29a	$v' \le (1.6v_c)$ $A_{sv} = (v - v_c) u_1 d / (0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
Equation 29b	'1.6vc' < 'v' \leq '2v _c ' \Rightarrow $A_{sv} = 5(0.7 v - v_c) u_1 d / (0.87f_{yv})$ Note: Sin 90° =1 for vertical bars
Figure 3.17	Check against minimum Steel = (0.4 u_1 d)/(0.87 f_{yv}) (altering u_1 to u_2 , etcaccordingly)
	Note : 'A _{sv} ' is for TWO perimeters of studs/links at a maximum of 0.75d centres.
	The first perimeter of studs located at 0.5d should contain 40% of the calculated area of the reinforcement required in u_1 .
	Repeat 'design at perimeters' until 'v' < ' v_c ' hence no more reinforcement is required.

Rectangular Loaded Areas - EDGE

rtootangalari			
	Y-axis Y-axis		
	X-axis X -axis X -		
PO			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Reference to	<u>Cantilever edges (c) are restricted to a maximum of 3d, lengths greater than 3d are ignored.</u>		
BS8110 part1	d = h - top cover - T1 Bars size / 2 - T2 Bars size / 2(average in both directions)		
Figure 3.14	$Xy = b + c + 1.5d$ or $Xx = a + (2 \times 1.5d)$ (required only when there is a moment in the slab) $u_0 = a + 2b$ or $u_0 = a + 2b + 2c$ Whichever is the smallest.		
3.7.7.2	$u_0 = a + 2b$ or $u_0 = a + 2b + 2c$ which even is the sinallest.		
	use X as Xx or Xy as appropriate		
Figure 3.15	$V_{\text{eff}} = 1.4V_t \text{ or } 1.25V_t \text{ (direct shear) or } V_{\text{eff}} = V_t (1.25 + 1.5M_t / (V_t \times \mathbf{X})) \text{ (moment present)}$		
<u>Design at face</u>	$v = V_{\rm eff} / (u_0 \times d)$		
Equation 27	Check v is not greater than 0.8 x $\sqrt{\Box \Box} f_{cu}$ or 5 N/mm ²		
3.7.6.4 & 3.7.7.2	f _{cu} should not to be taken greater than 40 N/mm ²		
<u>Design at</u> Perimeters	Design each perimeter u_1 , u_2 , u_n - starting 1.5d from the column/pile face and at 0.75d thereafter until v_c is greater than or equal to v .		
3.7.7.3	$u_1 = (1.5d \times 4) + a + 2b + 2c u_2 = (2.25d \times 4) + a + 2b + 2c u_3 = (3d \times 2) \times 4 + a + 2b + 2c \& $ so on		
Table 3.8	$100A_s / (1000 \times d)$ Not to be taken more than 3		
	400 / d Not to be taken less than 1		
	$v_c = 0.79 \text{ x} (((100 \text{ A}_s / (1000 \text{ x} \text{ d}))^{1/3} \text{ x} (400 / \text{ d})^{1/4}) / 1.25) \text{ x} (f_{cu}/25)^{1/3}$		
Equation 28	$v = V_{eff}/(u_1 \times d)$		
3.7.7.4	$v' < v_{c'}$ > No Shear reinforcement is required		
3.7.7.5	$v' > 2v_c'$ > Redesign using: deeper slab, increase grade or top reinforcement.		
Equation 29a	$v' \le 1.6v_c'$ $A_{sv} = (v - v_c) u_1 d/(0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars		
Equation 29b	'1.6vc' < 'v' ≤ '2v _c ' → $A_{sv} = 5(0.7 v - v_c) u_1 d / (0.87 f_{yv})$ Note: Sin 90° = 1 for vertical bars		
Figure 3.17	Check against minimum Steel = ($0.4 u_1 d$) / ($0.87 f_{yv}$) (altering u_1 to u_2 , etcaccordingly)		
	Note : (A_{sv}) is for TWO perimeters of studs/links at a maximum of 0.75d centres.		
	The first perimeter of studs located at 0.5d should contain 40% of the calculated area of the reinforcement required in u_1 .		
	Repeat 'design at perimeters' until 'v' < ' v_c ' hence no more reinforcement is required.		

Rectangular Loaded Areas – INTERNAL CORNER Y-axis

Reference to	Cantilever edges (c) are restricted to a maximum of 3d, lengths greater than 3d are ignored.
BS8110 part1	d = h - top cover - T1 Bars size / 2 - T2 Bars size / 2(average in both directions)
Figure 3.14	Xy = b + c + 1.5d or $Xx = a + e + 1.5d$ (required only when there is a moment in the slab)
	$u_0 = a + b + any$ negative value for 'c' or 'e'.
3.7.7.2	use X as Xx or Xy as appropriate
Figure 3.15	$V_{eff} = 1.25V_t$ (direct shear) or $V_{eff} = V_t (1.25 + 1.5M_t / (V_t \times X))$ (moment present)
Design at face	$v = V_{eff} / (u_0 \times d)$
Equation 27	Check v is not greater than 0.8 x $\sqrt{\Box \Box f_{cu}}$ or 5 N/mm ²
3.7.6.4 & 3.7.7.2	f _{cu} should not to be taken greater than 40 N/mm ²
<u>Design at</u> <u>Perimeters</u>	Design each perimeter u_1 , u_2 , u_n - starting 1.5d from the column/pile face and at 0.75d thereafter until v_c is greater than or equal to v.
3.7.7.3	$u_1 = (1.5d \times 2) + a + b + c + eu_2 = (2.25d \times 2) + a + b + c + eu_3 = (3d \times 2) + a + b + c + e$ so on
Table 3.8	100A _s / (1000 x d) Not to be taken more than 3
	400 / d Not to be taken less than 1
	$v_c = 0.79 x (((100A_s / (1000 x d))^{1/3} x (400 / d)^{1/4}) / 1.25) x (f_{cu}/25)^{1/3}$
Equation 28	$v = V_{\rm eff} / (u_1 \times d)$
3.7.7.4	v' < 'v _{c'} > No Shear reinforcement is required
3.7.7.5	$v' > 2v_c'$ > Redesign using: deeper slab, increase grade or top reinforcement.
Equation 29a	$v' \le 1.6v_c$ $A_{sv} = (v - v_c) u_1 d/(0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
Equation 29b	'1.6vc' < 'v' \leq '2v _c ' \rangle $A_{sv} = 5(0.7 v - v_c) u_1 d / (0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
Figure 3.17	Check against minimum Steel = (0.4 u_1 d)/(0.87 f_{yy}) (altering u_1 to u_2 , etcaccordingly)
	Note : 'A _{sv} ' is for TWO perimeters of studs/links at a maximum of 0.75d centres.
	The first perimeter of studs located at 0.5d should contain 40% of the calculated area of the reinforcement required in u_1 .
	Repeat 'design at perimeters' until 'v' < ' v_c ' hence no more reinforcement is required.

Shear Design to BS8110

Rectangular Loaded Areas – EXTERNAL CORNER

Defenses (s	Or will some a data (a s) and market (a d (a s market some of 4 Ed) and the superior and interval
Reference to BS8110 part1	Cantilever edges (c,e) are restricted to a maximum of 1.5d, lengths greater are ignored.
200110 parti	d = h - top cover - T1 Bars size / 2 - T2 Bars size / 2(average in both directions)
Figure 3.14	Xy = b + 3d or $Xx = a + 3d$ (required only when there is a moment in the slab)
3.7.7.2	$u_0 = 2a + 2b + any$ negative value for 'c' or 'e'.
Figure 3.15	use X as Xx or Xy as appropriate
<u>Design at face</u>	$V_{eff} = 1.25V_t$ (direct shear) or $V_{eff} = V_t (1.25 + 1.5M_t / (V_t \times X))$ (moment present)
Equation 27	$v = V_{eff} / (u_0 \times d)$
3.7.6.4 & 3.7.7.2	Check v is not greater than 0.8 x $\sqrt{\Box \Box} f_{cu}$ or 5 N/mm ²
	f _{cu} should not to be taken greater than 40 N/mm ²
<u>Design at</u>	Design each perimeter u1, u2,un - starting 1.5d from the column/pile face and at 0.75d thereafter
Perimeters	until vc is greater than or equal to v.
3.7.7.3	u1 =(1.5d x 6) +2a +2b +c +eu2 =(2.25d x 6) +2a +2b +c +eu3 =(3d x 6) +2a +2b +c +e& so on
	Check u1, u2, etc Against a complete enclosed perimeter i.e. $u1 = ((1.5d \times 2) \times 4 + 2a + 2b)$
Table 3.8	100As /(1000 x d) Not to be taken more than 3
	400 / d Not to be taken less than 1
	$vc = 0.79 x (((100 \text{As} / (1000 x d))) \frac{1}{3} x (400 / d) \frac{1}{4}) / 1.25) x (fcu / 25) \frac{1}{3}$
Equation 28	v = Veff / (u1 x d)
3.7.7.4	$v' < v_{c'}$ > No Shear reinforcement is required
3.7.7.5	$v' > 2v_c'$ > Redesign using: deeper slab, increase grade or top reinforcement.
Equation 29a	$v' \le 1.6v_c'$ $A_{sv} = (v - v_c) u_1 d/(0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
Equation 29b	'1.6vc' < 'v' ≤ '2v _c ' → $A_{sv} = 5(0.7 v - v_c) u_1 d / (0.87f_{yv})$ Note: Sin 90° = 1 for vertical bars
Figure 3.17	Check against minimum Steel = (0.4 u ₁ d)/(0.87 f_{yy}) (altering u ₁ to u ₂ ,etcaccordingly)
	Note : A_{sv} is for TWO perimeters of studs/links at a maximum of 0.75d centres.
	The first perimeter of studs located at 0.5d should contain 40% of the calculated area of the reinforcement required in u_1 .
	Repeat 'design at perimeters' until 'v' < ' v_c ' hence no more reinforcement is required.
-	

oles in Slabs

Design Guidance for Holes in Slabs

BS8110 part 1 1997 3.7.7.6 Modification of effective perimeter to allow for holes.

When a hole or holes are within 6d from the face of the column/pile, part of the perimeter that is enclosed by the radial projections (dead zone) from the centre of the column/pile to the edges of the hole/s are considered ineffective.

Each perimeter (uo, u1, etc..) must be reduced accordingly and any studs/reinforcement ignored when calculating the area of steel required/used, care should be taken when repositioning rails to miss holes that it has not moved into another perimeter without adjusting the calculation likewise.

A single hole can be ignored if its largest width is less than the smaller of:

- 1. One-quarter of the column side
- 2. Half the slab depth

It may be desirable or quicker to consider a worst-case design ignoring the part of the slab with the hole/s and design as an edge or corner condition, supplying additional rails to the disregarded area of slab that will be receiving load from the slab.

