Punching Shear Design to EC2 (EN 1992-1-1-2004 (E)

Incorporating UK National Annex Amendment No. 1 - noted as 'December 2009' on page 6.
For normal concrete flat slabs 200 mm deep or greater.

Contents:

- Required information:

1. Enhancement factor (β)
2. Shear at the Column Face/Perimeter (u_{0})
a. Effective depth (d).
b. Perimeter of loaded area $\left(u_{0}\right)$.
c. Design value of the applied shear stress (VEd.o) at the face of the column.
d. Design value of the maximum punching shear resistance ($V_{\text {Rd.max }}$).
3. Control Perimeter (u_{1})
4. Punching Shear Resistance at the Control Perimeter (u_{1}) without Reinforcement.
a. Punching Shear Resistance ($v_{\text {Rd. } . c}$) at 2d
b. Design value of the maximum shear stress at the control perimeter u_{1}
c. Design value of the maximum punching shear resistance
5. Punching Shear Resistance ($V_{\text {Rd.cs }}$) at the Control Perimeter (u_{1}) with Reinforcement.
a. Punching Shear Resistance (VRd.cs)
b. Minimum punching shear reinforcement
6. Control perimeter where shear reinforcement is not required, (Uout. or $U_{\text {out.ef) }}$
7. Shearail Layouts - Spiral/Circular Pattern - Square Column
a. Calculating the position of the perimeter uout or Uout.ef
b. General rules for a Spiral/Circular Pattern
8. Shearail Layouts - Spiral/Circular Pattern - Circular Column
a. Calculating the position of the perimeter $u_{\text {out }}$ or Uout.ef
b. General rules for a Spiral/Circular Pattern
9. Shearail Layouts - Cruciform Pattern
a. Calculating the position of the perimeter $u_{\text {out }}$ or Uout.ef
b. General rules for a Spiral/Circular Pattern
10. Example Calculation - Internal condition
a. Spiral/Circular Pattern - Square Column.
b. Spiral/Circular Pattern - Circular Column.
c. Cruciform Pattern - Square Column.
11. Example Calculation - Edge condition
a. Spiral/Circular Pattern - Square Column.
12. Example Calculation - Corner condition
a. Spiral/Circular Pattern - Square Column.
13. Holes/penetrations in the slab
14. Enhanced Stud Spacing 'October 2010’

Shearail Design Manual to EC2

Required information.

Certain information is needed before a design can be undertaken:

- The size/shape of the loaded area (column, pile or wall).
- The characteristic compressive cylinder strength of concrete (f_{ck}).
- The mean ratio of tension reinforcement in both directions in a width of the column +3 d each side (column under: top reinforcement, column over: bottom reinforcement).
- slab reinforcement drawing may be necessary, if this information isn't given.
- The slab thickness.
- Top and bottom cover to the reinforcement.
- Design value of the applied shear force V_{Ed} (Ultimate load: factored)

It is assumed that:
That any loads given by the Project Engineer have been factored using the EC load factors (not from BS8110).

The enhancement factor (β) to be used is as recommended in 6.4.3. Figure 6.21 N , unless the Project Engineers advise otherwise.

The concrete slab is not constructed using lightweight aggregate.
Alternatively, the Engineer can provide the enhancement factor β.
We should make sure that loads given are only the slab loads and do not include the column above.

- The slab condition: i.e. Internal, edge or corner conditions, plus dimensions of the slab edge from the face of the column

Other consideration:

- Position and size of any hole/s in the slab within 6 d from the edge of the supporting column, pile, wall.
- Any changes in slab thickness, steps in level or movement joints local to the column/pile - a general layout drawing may be necessary.

It is assumed that:
For internal columns 50% area of the top reinforcement should be provided placed in a equal width to the sum of 0.125 times the panel each side of the column to resist the full negative moment.

Similarly, the edge and corner columns conditions, the slab should be reinforcement to comply with clause 9.4.2 (1)

Shearail Design Manual to EC2

1. Enhancement factor ($\boldsymbol{\beta}$)

If the structure is unbraced or if adjacent spans differ by more than $25 \%, \beta$ should be calculated, refer to section 6.4.3 (3), (4) \& (5).
(It is assumed that the Project Engineer will provide this information where applicable).
The enhancement factor β is taken from figure 6.21 N

Internal column	$\beta=1.15$
Edge Column	$\beta=1.4$
Corner Column	$\beta=1.5$

The β factor for External/Re-entrant corner column might be taken as 1.275.
Average between internal and edge column: $\beta=(1.15+1.4) / 2=1.275$
2. Shear at the Column Face/Perimeter (u_{0})
a. Effective depth (d)
$d_{\text {eff }}=\left(d_{y}+d_{z}\right) / 2$
6.4.2 equation 6.32

Flat slabs/piled ground slabs (column/pile supporting under the slab):
The effective depth ($d_{\text {eff }}$) is taken as the average depth of the top reinforcement to underside of the Slab

Raft foundation/Transfer slab (slab supporting column from above):
The effective depth ($d_{\text {eff }}$) is taken as the average depth of the bottom reinforcement to the top of the Slab.

b. Perimeter of loaded area. ($\boldsymbol{u}_{\boldsymbol{o}}$) 6.4 .5 (3)

Internal column $\quad u_{0}=2 c_{1}+2 c_{2}$

Edge column

$$
u_{0}=c_{2}+3 d \quad \text { or } \quad u_{0}=2 c_{1}+c_{2}
$$

(Smallest value of the two equations)

Corner column

$$
u_{0}=3 d \quad \text { or } \quad u_{0}=c_{1}+c_{2}
$$

(Smallest value of the two equations)

Note: holes within 6 d of the face of the loaded area will reduce u_{0} accordingly.
6.4.2 (3) also see section 13 Holes/Penetrations in the slab
c. Design value of the applied shear stress $\left(v_{\mathrm{Ed}}\right)$ at the face of the column.
$V_{\text {Ed } 0}=\beta V_{\text {Ed }} /\left(u_{0} d\right) \quad$ 6.4.5 (3) 6.53
d. Design value of the maximum punching shear resistance ($v_{\mathrm{Rd} \text {.max }}$)
$V_{\text {Rd.max }}=0.5 v f_{c d}$
NA to BS EN 1992-1-1-2004 6.4.5 (3) note.
Where
$v=0.6\left(1-\left(f_{c k} / 250\right)\right) \quad$ 6.2.2(6) 6.6 N
hence $\quad V_{\text {Rd.max }}=0.3 f_{c d}\left(1-\left(f_{c k} / 250\right)\right)$
Where
f_{cd} the value of the design compressive strength of concrete.
NA to BS EN 1992-1-1-2004 3.1.2 (2)P Notes the limitation of C50/60, unless otherwise proven.

$$
\begin{equation*}
f_{\mathrm{cd}}=\alpha_{\mathrm{cc}} f_{\mathrm{ck}} / y_{\mathrm{c}} \tag{3.15}
\end{equation*}
$$

f_{ck} is the characteristic compressive cylinder strength of concrete at 28 days, this can be found from table 3.1 in the code.
$\alpha_{\mathrm{cc}}=1 \quad$ coefficient for long term effects NA to BS EN 1992-1-1-2004 3.1.6 (1)P
$y_{\mathrm{c}}=1.5$ partial factor for material for ULS

When $v_{\text {Ed } 0}$ is greater than $v_{\text {Rd.max }}$ the slab depth(h) or the column size must be increased

Shearail Design Manual to EC2

3. Control Perimeter $\left(u_{1}\right)$

Basic control perimeter at 2 d from the loaded area (column or pile) u_{1}
Internal column

$$
u_{1}=2\left(c_{1}+c_{2}\right)+2 \pi(2 d)
$$

$$
u_{1}=2 \pi\left(2 d+\left(c_{1} / 2\right)\right)
$$

Edge column

$$
u_{1}=2 c_{1}+c_{2}+\pi(2 d)
$$

$$
u_{1}=\pi\left(2 d+\left(c_{1} / 2\right)\right)+2 e
$$

Corner column

$$
u_{1}=c_{1}+c_{2}+\pi(2 d) / 2
$$

$$
u_{1}=\pi\left(2 d+\left(c_{1} / 2\right)\right) / 2+e+f
$$

Note: holes within $6 d$ of the face of the loaded area will reduce u_{1} accordingly.

4. Punching Shear Resistance at the Control Perimeter (u_{1}) without Reinforcement.

a. Punching Shear Resistance ($V_{\text {Rd. }}$) at 2d
$\mathrm{V}_{\text {Rd.c }}=\mathrm{C}_{\text {Rd.c }} \mathrm{k}\left(100 \boldsymbol{\rho}_{I} \mathrm{f}_{\mathrm{ck}}\right)^{1 / 3}+\mathrm{k}_{1} \mathbf{s}_{\mathrm{cp}} \geq\left(\mathrm{v}_{\mathrm{min}}+\mathrm{k}_{1} \mathbf{s}_{\mathrm{cp}}\right) \quad$ (post-tensioned design) 6.4 .4 (6.47) where

$$
\mathrm{k}_{1}=0.1 \quad \text { NA to BS EN 1992-1-1-2004 6.4.4 (1) }
$$

$\mathbf{s}_{\mathrm{cp}}=\left(\mathbf{s}_{\mathrm{cy}}+\mathbf{s}_{\mathrm{cz}}\right) / 2 \quad \mathbf{s}_{\mathrm{cy}} \& \mathbf{s}_{\mathrm{cz}}$ are the normal concrete stress in the critical section in y - and z - directions (MPa, positive if compression)
$\mathbf{s}_{\mathrm{cy}}=\mathrm{N}_{\text {ed. } . \mathrm{y}} / \mathrm{A}_{\mathrm{cy}} \quad \& \quad \mathbf{s}_{\mathrm{cz}}=\mathrm{N}_{\text {ed. }} / \mathrm{A}_{\mathrm{cz}}$
Ned.y \& $N_{\text {ed.z }} \quad$ Are the longitudinal forces across the full bay for internal columns and the longitudinal force across the control section for edge columns, The force may be from a load or pre-stressing action.
$\mathrm{A}_{\mathrm{c}} \quad$ is the area of concrete according to the definition of N_{ed}.
$\mathrm{V}_{\text {Rd. } \mathrm{c}}=\mathrm{C}_{\text {Rd.c }} \mathrm{k}\left(100 \boldsymbol{\rho}_{\mid} \mathrm{f}_{\mathrm{ck}}\right)^{1 / 3} \geq \mathrm{V}_{\text {min }} \quad$ (non-post or pre-tensioned design) 6.4 .4 (6.47)
where

$$
\begin{aligned}
& k=1+\sqrt{200 / d} \quad \text { less than or equal to } 2 \quad \text { 6.4.4 (6.47) } \\
& \boldsymbol{\rho}_{\mathrm{l}}=\sqrt{\boldsymbol{\boldsymbol { \rho } _ { \mathrm { ly } . } . \boldsymbol { \rho } _ { \mathrm { lz } }}} \quad \text { mean reinforcement ratio, } \leq 0.02 \quad \text { 6.4.4 (6.47) } \\
& \boldsymbol{\rho}_{\mathrm{ly}} \text { and } \boldsymbol{\rho}_{\mathrm{lz}} \quad \text { the mean ratio of tension reinforcement in both } \\
& \text { directions (width of column }+3 d \text { each side). } \\
& \boldsymbol{\rho}_{\mathrm{ly}}=\mathrm{A}_{\mathrm{sly}} /\left(\mathrm{bd}_{\mathrm{y}}\right) \& \boldsymbol{\rho}_{\mathrm{lz}}=\mathrm{A}_{\mathrm{slz}} /\left(\mathrm{bd}_{\mathrm{z}}\right) \quad \text { where } \mathrm{b}=1000 \mathrm{~mm} \\
& C_{\text {Rd.c }}=0.18 / y_{c} \\
& y_{c}=1.5 \quad \text { partial factor for material for ULS } \\
& \text { 2.4.2.4 table } 2.1 \mathrm{~N} \\
& \mathrm{v}_{\text {min }}=0.035 \mathrm{k}^{3 / 2} \mathrm{f}_{\mathrm{ck}}^{1 / 2} \\
& \text { NA to BS EN 1992-1-1-2004 6.4.4 (1) } \\
& \text { and stated in 6.2.2 (6.3N) }
\end{aligned}
$$

Transposed to :

$$
\begin{aligned}
& V_{\text {Rd. }}=\left(0.18 / y_{c}\right) k\left(100 \rho_{I} f_{c k}\right)^{1 / 3} \geq V_{\min } \quad \& \quad y_{c}=1.5 \quad \text { (Concise Eurocode 2, June 2006) } \\
& V_{\text {Rd. }}=0.12 k\left(100 \rho_{\mid} f_{\mathrm{ck}}\right)^{1 / 3} \geq V_{\text {min }} \quad \text { (non post-tensioned design) } \\
& \text { or } \\
& V_{\text {Rd.c }}=0.12 k\left(100 \boldsymbol{\rho}_{\mathrm{I}} f_{\mathrm{ck}}\right)^{1 / 3}+0.1 \mathrm{~s}_{\mathrm{cp}} \geq\left(v_{\text {min }}+0.1 \mathrm{~s}_{\mathrm{cp}}\right) \quad \text { (post-tensioned design) }
\end{aligned}
$$

b. Design value of the maximum shear stress at the control perimeter \mathbf{u}_{1}
$v_{\mathrm{Ed} 1}=\beta V_{\mathrm{Ed}} /\left(u_{1} d\right)$
6.4 .3 (3) 6.38
c. Design value of the maximum punching shear resistance

$V_{\text {Ed } 1}<V_{\text {Rd.c }}$	punching shear reinforcement is not required	$6.4 .3(2 \mathrm{~b})$
$V_{\text {Ed } 1}>2 V_{\text {Rd.c }}$	Exceeds the maximum limit allowed in the UK National Annex	NA amendment No.1
	Increase the slab properties.. i.e. Top reinforcement, Depth, etc..	$6.4 .5(3)$

Where
$V_{\text {Ed } 1} \quad$ Actual stress at the perimeter u_{1}
$v_{\text {Rd.c }} \quad$ Punching shear resistance at u_{1} (without reinforcement).
5. Punching Shear Resistance ($v_{\text {Rd..cs }}$) at the Control Perimeter (u_{1}) with Reinforcement.
a. Punching Shear Resistance ($V_{\text {Rd.cs }}$)
$v_{\text {Rd.cs }}=0.75 v_{\text {Rd.c }}+1.5\left(d / s_{r}\right) A_{s w} f_{y w d . e f}\left(1 /\left(u_{1} d\right)\right) \sin \alpha$
Where
$V_{\text {Rd.c }} \leq V_{\text {Ed } 1} \quad 6.4 .3$ (3) 6.38
$V_{\text {Rd.c }}=0.12 k\left(100 \rho_{\mathrm{l}} f_{\mathrm{ck}}\right)^{1 / 3}$
(see page 6)
$v_{\mathrm{Ed} 1}=$ The actual stress at the perimeter at u_{1} is $\beta V_{E d} /\left(u_{1} d\right)$
$\mathrm{A}_{\text {sw }} \quad$ Area of one perimeter of shear reinforcement around the column. (to be greater than $A_{\text {sw.min }}$ given below)
$s_{r} \quad$ Radial spacing of the perimeter reinforcement.
$f_{y w d . e f} \quad$ The effective design strength of the punching reinforcement.
$f_{y w d . e f}=250+0.25 \mathrm{~d}$ less than or equal to $f_{y w d}=\left(f_{y} / 1.15\right)$
$\alpha \quad$ The angle between the shear reinforcement (studs at $90^{\circ}=\sin 90^{\circ}=1$)
Transposed to:

```
VRd.cs = 0.75 vRd.c + 1.5 (d/ / srr) A Asw fywd.ef (1 / (utd)) (vertical shear reinforcement)
v
(vgd.cs }-0.75\mp@subsup{v}{\mathrm{ Rd.c }}{})/1.5\mp@subsup{f}{ywd.ef }{m}=(d/\mp@subsup{s}{r}{})\mp@subsup{\textrm{A}}{\mathrm{ sw }}{}/(\mp@subsup{u}{1}{}d
```



```
VED 1 = VRd.cs
\(A_{\text {sw }}=\left(V_{\text {ED } 1}-0.75 V_{\text {Rd.c }}\right) u_{1} S_{r} /\left(1.5 f_{\text {ywd.ef }}\right) \quad\) (per perimeter) \(\quad\) (Concise Eurocode 2, June 2006) or
\(\mathrm{A}_{\mathrm{sw}} / S_{\mathrm{r}}=\left(v_{\text {ED } 1}-0.75 v_{\text {Rd. }}\right) u_{1} /\left(1.5 f_{\text {ywd.ef }}\right)\)
b. Minimum area of a Link/Stud
\(A_{\text {sw.min }}=(1.5 \sin \alpha+\cos \alpha) /\left(s_{r} s_{t}\right) \quad\) greater or equal to \(0.08 \sqrt{ }\left(f_{\mathrm{ck}}\right) / f_{\mathrm{yk}} \quad 9.4 .3\) (9.11)
\(s_{\mathrm{t}} \quad\) Spacing of the reinforcement in the tangential direction. \& \(s_{\mathrm{r}}\) as above.
\(f_{c k}\) is the characteristic compressive cylinder strength of concrete at 28 days, this can be found from table 3.1
\(f_{\mathrm{yk}}\) is the characteristic tensile strength of reinforcement \(500 \mathrm{~N} / \mathrm{mm}^{2}\)
a The angle between the shear reinforcement (studs at \(\sin 90^{\circ}=1 \& \cos 90^{\circ}=0\) ) Transposed to :
\(\mathrm{A}_{\text {sw.min }} \times 1.5 /\left(\mathrm{s}_{\mathrm{r}} \mathrm{s}_{\mathrm{t}}\right) \geq 0.08 \sqrt{ }\left(\mathrm{f}_{\mathrm{ck}}\right) / \mathrm{f}_{\mathrm{yk}}\)
(IStuctE Manual Eurocode 2, Sept 2006)
\(A_{\text {sw.min }}=0.08\left(\mathrm{~s}_{\mathrm{r}} \mathrm{s}_{\mathrm{t}}\right) \sqrt{ }\left(\mathrm{f}_{\mathrm{ck}}\right) / 1.5 \mathrm{f}_{\mathrm{yk}}\)
\(\mathrm{A}_{\mathrm{sw} . \min } / \mathrm{s}_{\mathrm{r}}=0.08 \mathrm{~s}_{\mathrm{t}} \sqrt{ }\left(\mathrm{f}_{\mathrm{ck}}\right) /\left(1.5 \mathrm{f}_{\mathrm{yk}}\right)\)
Reinforcement to be detailed in accordance of 9.4.3.

\section*{4. Control perimeter where shear reinforcement is not required ( \(U_{\text {out }}\) or \(U_{\text {out.ef) }}\)}

The outermost perimeter of shear reinforcement should be placed at a distance not greater than \(k d\) within \(U_{\text {out }}\) or \(U_{\text {out. ef }}\)
\(K=1.5\) unless the perimeter \(U_{\text {out }}\) or \(U_{\text {out.ef }}\) is less than 3d from the face of loaded area (column/pile). In this case the reinforcement should be placed in the zone 0.3d to \(1.5 d\) from the face of the column.

NA to BS EN 1992-1-1-2004 6.4.5 (4)
There should be a minimum of two perimeters of reinforcement.
The spacing of the reinforcement perimeters should not exceed \(0.75 d\)
The first stud is placed not less than 0.3d from the face of the support.
Similarly, the distance between the face of a support or circumference of a loaded area and the nearest shear reinforcement taken into account in the design should not exceed d/2.

The spacing of reinforcement around a perimeter should not exceed \(1.5 d\) within the control perimeter (2d from the loaded area), and should not exceed 2d for perimeters outside the control perimeter, where that part of the perimeter is assumed to contribute to the shear capacity.

Reference 6.4 .5 (4) figure 6.22
\[
\begin{equation*}
K d=1.5 d \tag{4}
\end{equation*}
\]
\[
\begin{equation*}
U_{\text {out }} \text { or } U_{\text {out.et }}=\beta V_{\text {Ed }} /\left(V_{\text {Rd.c.c }} d\right) \tag{4}
\end{equation*}
\]

The shape of the perimeter \(U_{\text {out }}\) or \(U_{\text {out.ef }}\) will fluctuate in accordance to the arrangement of the shear reinforcement and spacing limitations.

5. Shearail Layout - Spiral/Circular Pattern - Square Column.


\section*{Shearail Design Manual to EC2}
a. Calculating the position of the perimeter \(U_{\text {out }}\) or \(U_{\text {out.ef }}\)

Ideally the corner rails on a spiral layout pattern are set at \(30^{\circ} \& 60^{\circ}\) giving equal lengths around \(\mathrm{U}_{\text {out }}\) for ' e '.

Using a pre-fabricated rail with fixed values for \(x_{1}\) and \(x_{2}\) reduces the complication of manufacture process and fixing on site.


For this reason, we setting out for \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\) to be equal, this in turn will increase the length of e to \(\mathrm{e}_{1}\) and to \(\mathrm{e}_{2}\), slightly increase the length of \(\mathrm{U}_{\text {out. }}\)

This increase is ignored on the basis that the larger perimeter will have an increased load capacity and is therefore a worst-case is being considered.

Note: \(g_{2}=\) half the column size, to a maximum of \(0.75 d\)

*Denotes: The diagram indicates maximum spacing values in terms of 'd' (effective depth). When the stud spacing is set to a maximum of \(0.75 d\) and \(g_{2}\) is also set at the maximum of \(0.75 d\), this allows for a site location tolerance between the studs around the perimeter within the maximum stud spacing of \(0.15 d\) at \(2 d\).

Provide intermediate corner rails when more than 4 perimeters of reinforcement are required (more than four studs on a rail).

When the column size is smaller than 1.5 d then

Note: \(g_{2}=\) half the column size, to a maximum of \(0.75 d\)

Assuming the slightly worst the sides are equal
\(U_{\text {out }}=12 e\) hence \(e=U_{\text {out }} / 12\)
\(g=e\left(\sin 75^{\circ} / \sin 30^{\circ}\right)=1.932 e\)
\(g_{1}=g-1.553 d-g_{2}\)

When the column size is larger than 1.5 d than
\(e_{1}=c_{1}-2 g_{2}\)
\(e_{2}=c_{2}-2 g_{2}\)
\(U_{\text {out }}=12 e+2 e_{1}+2 e_{2}\)
hence \(\mathrm{e}=\left(\mathrm{U}_{\text {out }}-\mathbf{2} \mathbf{e}_{1}-2 \mathbf{e}_{2}\right) / \mathbf{1 2}\)
\(g=e\left(\sin 75^{\circ} / \sin 30^{\circ}\right)=1.932 e\)
\(g_{1}=\boldsymbol{g}-1.553 d-g_{2}\)
\[
\text { 2el }+2 e_{2}
\]

\section*{b. General rules for a Spiral/Circular Pattern}
position the last stud from column face at \(g_{1}\), provide a minimum of 2 studs on a rail.
\(U_{\text {out }}=\beta V_{\text {Ed }} /\left(V_{\text {Rd.c }} d\right)\)

\section*{Internal condition - Square/rectangular Column}

When the column size is equal to \(2 g_{2} \quad e=U_{\text {out }} / 12\)
\[
\text { otherwise } e=\left(U_{\text {out }}-2 e_{1}-2 e_{2}\right) / 12
\]

\section*{Edge condition - Square/rectangular Column}
\(e_{1}=c_{1}-g_{2} \quad \& \quad e_{2}=c_{2}-2 g_{2}\)
When the column size \(c_{2}\) is equal to or less than \(2 g_{2}\)
\[
\begin{aligned}
U_{\text {out }}=6 e+2 e_{1} & \text { therefore } e=\left(U_{\text {out }}-2 e_{1}\right) / 6 \\
& \text { otherwise } e=\left(U_{\text {out }}-2 e_{1}-e_{2}\right) / 6
\end{aligned}
\]


\section*{Corner condition-Square/rectangular Column}
\(e_{1}=c_{1}-g_{2} \quad \& \quad e_{2}=c_{2}-g_{2}\)
\(U_{\text {out }}=3 e+e_{1}+e_{2}\) therefore \(e=\left(U_{\text {out }}-\mathbf{e}_{1}-\mathbf{e}_{2}\right) / 3\)


\section*{for all conditions:}
\(g=e\left(\sin 75^{\circ} / \sin 30^{\circ}\right)=1.932 e\)
\(g_{1}=\boldsymbol{g}-1.553 d-g_{2}\)
stud spacing \(=\left(g_{1}-0.5 d\right) /(\) number of stud on a rail -1\()\)
6. Shearail Layout - Spiral/Circular Pattern - Circular Column.



\section*{Shearail Design Manual to EC2}
9. Shearail Layout - Cruciform Pattern. (Note : Magenta coloured studs are not used in the design).

\section*{a. Calculating the position of the perimeter \(u_{\text {out }}\) or \(u_{\text {out.ef }}\)}

Note: increasing the studs to more than three on a rail will not increase the outer perimeter - therefore limits the usefulness of the cruciform layout after three perimeters of studs.

b. General rules for a Cruciform Pattern
position the first stud from the column face \(=0.3 \mathrm{~d}\)
position the last stud from the column face \(=g_{1}+0.3 d\)
minimum number of studs on a rail is 2


Stud spacing at last \(2 \mathrm{~d}\left(\mathrm{~s}_{\mathrm{t}}\right)=1.932(2 \times\) stud spacing \()\)
(less than or equal to 1.5d)
\(U_{\text {out }}=\beta V_{\text {Ed }} /\left(V_{\text {Rd.c }} d\right)\)

Note: the value \(U_{\text {out.ef }}\) will not increase after more than three perimeters of reinforcement.

\[
\begin{array}{ll}
\begin{array}{l}
\text { Uout. ef } \\
\left(c_{1}\right. \text { column side) }
\end{array} & =\left(0.6 d+c_{1}\right)+(3 d \pi) / 4+2 d \\
& =2.6 d+c_{1}+(3 d \pi) / 4
\end{array}
\]
similarly \(u_{\text {out ef }}\) for \(c_{2}\) column side \(=2.6 d+c_{2}+(3 d \pi) / 4\)


Internal condition (based on a minimum of three perimeters of reinforcement/studs)
\[
\begin{aligned}
\text { u out } & =2\left(2.6 d+c_{1}+(3 d \pi) / 4\right)+2\left(2.6 d+c_{2}+(3 d \pi) / 4\right) \\
& =5.2 d+2 c_{1}+(3 d \pi) / 2+5.2 d+2 c_{2}+(3 d \pi) / 2 \\
& =\mathbf{1 0 . 4 d} \mathbf{+} \mathbf{c}_{\mathbf{1}}+\mathbf{2} \mathbf{c}_{\mathbf{2}}+\mathbf{3 d} \boldsymbol{\pi}
\end{aligned}
\]

Edge condition (based on a minimum of three perimeters of reinforcement/studs)
\[
\begin{aligned}
\text { U out } \quad & =2\left(1.3 d+c_{1}+(3 d \pi) / 8\right)+2.6 d+c_{2}+(3 d \pi) / 4 \\
& =2.6 d+2 c_{1}+(3 d \pi) / 4+2.6 d+c_{2}+(3 d \pi) / 4 \\
& =5.2 d+2 c_{1}+c_{2}+(3 d \pi) / \mathbf{2}
\end{aligned}
\]


\section*{Corner condition}
(based on a minimum of three perimeters of reinforcement/studs)
\[
\begin{aligned}
u_{\text {out }} & =1.3 d+c_{1}+(3 d \pi) / 8+1.3 d+c_{2}+(3 d \pi) / 8 \\
& =\mathbf{2 . 6 d}+\mathbf{c}_{1}+\boldsymbol{c}_{2}+(3 d \pi) / \mathbf{4}
\end{aligned}
\]


\section*{10. Example calculation - Internal condition}

\section*{Data}

Slab depth \(\mathrm{h}=300 \mathrm{~mm}\)
Load \(\mathrm{V}_{\mathrm{ED}}=900 \mathrm{kN}\)
Cover \(=30 \mathrm{~mm}\) (top and bottom)
Reinforcement T1 \& T2 = H16 @ 150c/c
Compressive strength of concrete \(\mathrm{f}_{\mathrm{ck}}=30 \mathrm{MPa}\)
a. Spiral/Circular Pattern - 300mm Square Column.

Internal column \(\quad \beta=1.15\) (unless advised otherwise by the Project Engineer).
\(d=300-30-16 / 2-16 / 2\)
\(=254 \mathrm{~mm}\)
\(d_{y}=300-30-16 / 2\)
\(=262 \mathrm{~mm}\)
\(d_{z}=300-30-16-16 / 2\)
\(=246 \mathrm{~mm}\)

\section*{Shear at the column face}
\begin{tabular}{ll}
\(u_{0}=4 \times 300 \quad\) (note: any holes within \(6 d\) need to be allowed for) & \(=1200 \mathrm{~mm}\) \\
\(\beta V_{E D}=1.15 \times 900\) & \(=1035 \mathrm{kN}\) \\
\(V_{E D O}=\beta V_{E d} /\left(u_{0} d\right)=1035 \times 1000 /(1200 \times 254)\) & \(=3.396 \mathrm{MPa}\) \\
\(f_{c d}=\alpha_{c c} f_{c k} / y_{c}=1 \times 30 / 1.5\) & \(=20 \mathrm{MPa}\) \\
\(V_{\text {Rd. } \max }=0.3 f_{c d}\left(1-\left(f_{c k} / 250\right)\right)=0.3 \times 20(1-(30 / 250))\) & \(=5.28 \mathrm{MPa}\) \\
check if \(V_{E D O} \leq V_{\text {Rd.max }} \quad 3.396 \mathrm{MPa} \leq 5.28 \mathrm{MPa}\) & \(\mathrm{OK}!\)
\end{tabular}

\section*{Shear at control perimeter at 2d}
\(\mathrm{u}_{1}=2\left(\mathrm{c}_{1}+\mathrm{c}_{2}\right)+2 \mathrm{~m}(2 \mathrm{~d})=4 \times 300+2 \times \pi \times(2 \times 254) \quad=4392 \mathrm{~mm}\)
(note: any holes within \(6 d\) need to be allowed for)
Shear at the control perimeter without reinforcement
\(C_{\text {Rd. }}=0.18 / y_{c}=0.18 / 1.5\)
\(=0.12\)
\(k=1+\sqrt{ }(200 / d)=1+\sqrt{ }(200 / 254)\)
\(=1.887 \leq 2\)
\(v_{\text {min }}=0.035 k^{3 / 2} f_{c k}^{1 / 2}=0.035 \times(1.887)^{3 / 2} \times(30)^{1 / 2}\)
\(=0.497 \mathrm{MPa}\)
\(V_{E d 1}=\beta V_{E d} /\left(u_{1} d\right)=1035 \times 1000 /(4392 \times 254)\)
\(=0.928 \mathrm{MPa}\)

Consider reinforcement over \(300+6 \times 254=1.824 \mathrm{~m}\) width in both directions from centre of column.

Using H16 @ 150c/c both directions \(=1340.41 \mathrm{~mm}^{2} / \mathrm{m}\) T1 \& T2
\[
\begin{aligned}
& \boldsymbol{\rho}_{\mathrm{I}}=\sqrt{ }\left(\left(\mathrm{A}_{\text {sly }} /\left(\mathrm{b} \mathrm{~d}_{\mathrm{y}}\right) \times \mathrm{A}_{\text {slz }} /\left(\mathrm{b} \mathrm{~d}_{z}\right)\right)=\sqrt{ }(1340.41 /(1000 \times 262) \times 1340.41 /(1000 \times 246))=\right. \\
& \quad=0.00528<0.02 \\
& v_{\text {Rd.c }}= C_{\text {Rd.c }} k\left(100 \boldsymbol{\rho}_{\mathrm{I}} f_{\mathrm{ck}}\right)^{1 / 3}=0.12 \times 1.887(100 \times 0.00528 \times 30)^{1 / 3}=0.569 \mathrm{MPa}
\end{aligned}
\]
check if \(\quad v_{\text {Rd. } . ~} \geq v_{\text {min }} \quad 0.569>0.497 \quad\) Ok! (use largest value) check if \(v_{E D} 1<v_{\text {Rd. }} \quad 0.928>0.569 \quad\) Shear reinforcement required check if
\(U_{\text {out required }}=\beta V_{\text {Ed }} /\left(V_{\text {Rd.c }} d\right)=1.15 \times 900 \times 1000 /(0.5688 \times 254)=7164 \mathrm{~mm}\)
(note: any holes within \(6 d\) need to be allowed for)

\section*{Shearail Layout - Spiral/Circular Pattern}
\(0.75 d=190.5 \mathrm{~mm}\)
\(300 / 2=150 \mathrm{~mm}\) therefore: position rail central about column face in each direction hence \(g_{2}=150 \mathrm{~mm}\)
\(U_{\text {out required }}=7164 \mathrm{~mm}\)
\(\mathrm{e}=U_{\text {out }} / 12\)
\[
=7164 / 12
\]
\(=597 \mathrm{~mm}\)
\(g=1.932 e\)
\(=1.932 \times 597\)
\(=1153.4 \mathrm{~mm}\)
\(g_{1}=g-1.553 d-g_{2}\)
\(=1153.4-1.553 \times 254-150\)
\(=609 \mathrm{~mm}\)
\(1^{\text {st }}\) stud from column face \(=0.5 d=127 \mathrm{~mm}\)
say 125 mm
distance of \(1^{\text {st }}\) to last stud \(=609-125=484=3 @ 165 \mathrm{~mm}<0.75 d=190.5 \mathrm{~mm}\)
Maximum stud distances on perimeter \(\left(\mathrm{s}_{\mathrm{t} 1.5}\right)=1.5 \mathrm{~d}=381 \mathrm{~mm} \quad \& \quad\left(\mathrm{~s}_{\mathrm{t} \text { last }}\right)=2.0 \mathrm{~d}=508 \mathrm{~mm}\)

\(V_{E d} 1=\beta V_{E d} /\left(u_{1} d\right)=1035 \times 1000 /(4392 \times 254)\)
\(f_{y w d . e f}=250+0.25 \mathrm{~d}=250+0.25 \times 254\)
\(f_{y w d}=\left(f_{y} / 1.15\right)=500 / 1.15\)
\[
\begin{array}{r}
=0.9278 \mathrm{MPa} \\
=313.5 \mathrm{~N} / \mathrm{mm}^{2} \\
=434.78 \mathrm{~N} / \mathrm{mm}^{2}>313.5 \mathrm{ok}!
\end{array}
\]
--- from earlier setting out: spacing rules are less then, \(1.5 d\) within 2d \& 2d at the forth stud.
Check this example for confirmation only:
\begin{tabular}{ll} 
Distance to \(1^{\text {st }}\) stud \(=\left(150 / \cos 30^{\circ}\right)+125\) & \(=298.2 \mathrm{~mm}\) \\
length to \(3^{\text {rd }}\) stud from column face \(=2 \times 165+298.2\) & \(=628.2 \mathrm{~mm}\) \\
length to last stud from column face \(=3 \times 165+298.2\) & \(=793.2 \mathrm{~mm}\) \\
\(S_{\mathrm{t}} 1.5=\sqrt{ }\left(628.2^{2}+628.2^{2}-2 \times 628.2 \times 628.2 \times \cos 30^{\circ}\right)\) & \(=325.5 \mathrm{~mm}<1.5 \mathrm{~d}\) \\
\(S_{\mathrm{t} \text { last }}=\sqrt{ }\left(793.2^{2}+793.2^{2}-2 \times 793.2 \times 793.2 \times \cos 30^{\circ}\right)\) & \(=410.6 \mathrm{~mm}<2.0 \mathrm{~d}\)
\end{tabular}

\section*{Shear at the control perimeter with reinforcement}
\[
\begin{aligned}
& A_{s w . \min }=0.08 s_{t} s_{r} V_{f_{c k}} /\left(1.5 f_{y k}\right)=0.08 \times 165 \times 410.6 \sqrt{ } 30 /(1.5 \times 500)=39.6 \mathrm{~mm}^{2} \\
& A_{s w}=\left(v_{E d 1}-0.75 v_{\text {Rd.c.c }}\right) u_{1} s_{r} /\left(1.5 f_{y w d . e f} \text { rail no. }\right) \\
& A_{s w}=(0.928-0.75 \times 0.569) \times 4392 \times 165 /(1.5 \times 313.5 \times 12)= \\
& =64.4 \mathrm{~mm}^{2} \rightarrow \text { stud dia }=10 \mathrm{~mm}\left(A=78.54 \mathrm{~mm}^{2}\right)
\end{aligned}
\]

Provide 12 No 10-4-240-745 (942 mm²). Spacing: 125/165/165/165/125 48 Studs total


\section*{Rail Layout}

\section*{b. Spiral/Circular Pattern. - 300mm dia internal Circular column}

All data as per 300 mm square column.
Internal column \(\beta=1.15 \quad\) (unless advised otherwise by the Project Engineer).
\(d=300-30-16 / 2-16 / 2\)
\(=254 \mathrm{~mm}\)
\(d_{y}=300-30-16 / 2\)
\(=262 \mathrm{~mm}\)
\(d_{z}=300-30-16-16 / 2\)
\(=246 \mathrm{~mm}\)

\section*{Shear at the column face}
\(u_{0}=\pi \times 300 \quad\) (note: any holes within 6d need to be allowed for) \(\quad=943 \mathrm{~mm}\)
\(\beta V_{E D}=1.15 \times 900=1035 \mathrm{kN}\)
\(V_{E D O}=\beta V_{E d} /\left(u_{0} d\right)=1035 \times 1000 /(943 \times 254)=4.324 \mathrm{MPa}\)
\(f_{c d}=\alpha_{c c} f_{c k} / Y_{\mathrm{c}}=1 \times 30 / 1.5=20 \mathrm{MPa}\)
\(v_{\text {Rd. } \text { max }}=0.3 f_{c d}\left(1-\left(f_{c k} / 250\right)\right)=0.3 \times 20(1-(30 / 250))=5.28 \mathrm{MPa}\) or
check if \(V_{E D} 0 \leq V_{\text {Rd.max }} \quad 4.324 \mathrm{MPa} \leq 5.28 \mathrm{MPa} \quad\) OK!

\section*{Shear at control perimeter at 2d}
\(\mathrm{u}_{1}=\pi((4 \times 254)+300) \quad=4134 \mathrm{~mm}\)
(note: any holes within 6d need to be allowed for)
Shear at the control perimeter without reinforcement
\[
\begin{array}{ll}
C_{\text {Rd.c }}=0.18 / y_{\mathrm{c}}=0.18 / 1.5 & =0.12 \\
k=1+\sqrt{ }(200 / \mathrm{d})=1+\sqrt{ }(200 / 254) & =1.887 \leq 2 \\
V_{\min }=0.035 k^{3 / 2} f_{c \mathrm{ck}}^{1 / 2}=0.035 \times(1.887)^{3 / 2} \times(30)^{1 / 2} & =0.497 \mathrm{MPa} \\
V_{\text {Ed } 1}=\beta V_{\text {Ed }} /\left(u_{1} d\right)=1035 \times 1000 /(4134 \times 254) & \\
\hline
\end{array}
\]

Consider reinforcement over \(300+6 \times 254=1.824 \mathrm{~m}\) width in both directions from centre of column.

Using H16 @ 150c/c both directions = \(1340.41 \mathrm{~mm}^{2} / \mathrm{m}\)
T1 \& T2
\(\boldsymbol{\rho}_{\text {I }}=\sqrt{ }\left(\left(\mathrm{A}_{\text {sly }} /\left(\mathrm{b} \mathrm{dy}_{\mathrm{y}}\right) \times \mathrm{A}_{\text {slz }} /\left(\mathrm{bd}_{z}\right)\right)=\sqrt{ }(1340.41 / 262 \times 1340.41 / 246) / 1000=\right.\) \(=0.00528<0.02\)
\(V_{\text {Rd.c }}=C_{\text {Rd.c }} k\left(100 \rho_{I} f_{c k}\right)^{1 / 3}=0.12 \times 1.887(100 \times 0.00528 \times 30)^{1 / 3}=0.569 \mathrm{MPa}\)
\begin{tabular}{llll} 
check if & \(v_{\text {Rd. } c} \geq v_{\text {min }}\) & \(0.569 \geq 0.497\) & Ok! (use largest value) \\
check if & \(v_{E D ~} 1<v_{\text {Rd.c }}\) & \(0.986>0.569\) & Shear reinforcement required \\
check if & \(v_{E D ~} 1 \leq 2 v_{\text {Rd.c. }}\) & \(0.928 \leq 1.138\) & Below \(2 v_{\text {Rd.c }}\) limitation
\end{tabular}
\(U_{\text {out required }}=\beta V_{\text {Ed }} /\left(V_{\text {Rd.c }} \alpha\right)=1.15 \times 900 \times 1000 /(0.569 \times 254)=7164 \mathrm{~mm}\)
(note: any holes within \(6 d\) need to be allowed for)

\section*{Shearail Layout - Spiral/Circular Pattern}
\(U_{\text {out required }}=7164 \mathrm{~mm}\)
Try: 8 spurs
\begin{tabular}{lll}
\(e=7164 / 8\) & \(=895.5 \mathrm{~mm}\) & \\
\(e_{2}=1.5 \times 254 \times \tan 22.5^{\circ}\) & \(=157.8 \mathrm{~mm}\) & \(F=180^{\circ} / 8=22.5^{\circ}\) \\
\(e_{3}=895.5-157.8 \times 2\) & \(=579.9 \mathrm{~mm}\) & \(2 d(508)>579.9<4 d(1016)\)
\end{tabular}
therefore 8 spurs with intermediate spacer rails.. \(\rightarrow 579.9 / 2=289.9<2 d\) ok!
Try 10 spurs
\[
\begin{array}{lll}
e=7164 / 10 & =716.4 \mathrm{~mm} & \\
e_{2}=1.5 \times 254 \times \tan 18^{\circ} & =123.8 \mathrm{~mm} & F=180^{\circ} / 10=18^{\circ} \\
e_{3}=716.4-123.8 \times 2 & =468.8 \mathrm{~mm} & 468.8<2 d(508 \mathrm{~mm})
\end{array}
\]
therefore : use: 10 spurs without intermediate spacer rails

- \(\quad\) Shear at the control perimeter with reinforcement
\[
\begin{aligned}
& A_{\text {sw.min }}=0.08 s_{t} s_{r} V_{f_{c k}} /\left(1.5 f_{y k}\right)=0.08 \times 165 \times 476 \sqrt{ } 30 /(1.5 \times 500) \quad=45.9 \mathrm{~mm}^{2} \\
& A_{\text {sw }}=\left(v_{E d 1}-0.75 v_{\text {Rd.c }}\right) u_{1} s_{r} /\left(1.5 f_{y w d . e f} \text { rail no. }\right) \\
& A_{s w}=(0.986-0.75 \times 0.569) \times 4134 \times 165 /(1.5 \times 313.5 \times 10)= \\
& =81.1 \mathrm{~mm}^{2} \rightarrow \text { stud dia }=12 \mathrm{~mm}\left(\mathrm{~A}=113.09 \mathrm{~mm}^{2}\right)
\end{aligned}
\]


\section*{Rail Layout}

10 No 12-4-240-745 (1131 mm²) Spacing: 125/165/165/165/125 40 Studs total

\section*{Cruciform Pattern.}

General rule: If more than 3 perimeters of studs are required then the Cruciform pattern is normally unsuitable.
\(U_{\text {out required }}=7164 \mathrm{~mm}\)
\(U_{\text {out }}=10.4 \times 254+2 \times 300+2 \times 300+3 \times 254 \times \pi=6235.5 \mathrm{~mm}\)
\(U_{\text {out.ef }}=\) from scaled diagram \(=1556.46 \times 4=6225.84 \mathrm{~mm}\) (first stud rounded down to 75 mm )

Cruciform pattern is unsuitable
\(\boldsymbol{U}_{\text {out,ef }}<U_{\text {out,required }}\)

Uout.ef Perimeter 1557 mm long


\section*{Rail Layout}

40 Studs total

\section*{11. Example calculation - Edge condition}

\section*{Data}

Slab depth \(\mathrm{h}=300 \mathrm{~mm}\)
Load \(\mathrm{V}_{\text {ED }}=450 \mathrm{kN}\)
Cover \(=30 \mathrm{~mm}\) (top and bottom)
Reinforcement T1 \& T2 = H16 @ 150c/c
Compressive strength of concrete \(\mathrm{f}_{\mathrm{ck}}=30 \mathrm{MPa}\)
a. Spiral/Circular Pattern.

Edge column \(\beta=1.4 \quad\) (unless advised otherwise by the Project Engineer).
\(d=300-30-16 / 2-16 / 2\)
\(=254 \mathrm{~mm}\)
\(d_{y}=300-30-16 / 2\)
\(=262 \mathrm{~mm}\)
\(d_{z}=300-30-16-16 / 2\)
\(=246 \mathrm{~mm}\)

\section*{Shear at the column face}
\(u_{0}=300+2 \times 300 \quad\left(1.5 \mathrm{~d}=381\right.\) therefore use \(\left.\mathrm{C}_{1}\right) \quad=900 \mathrm{~mm}\)
(note: any holes within \(6 d\) need to be allowed for)
\(\beta V_{E D}=1.4 \times 450 \quad=630 \mathrm{kN}\)
\(V_{E D 0}=\beta V_{\text {Ed }} /\left(u_{0} d\right)=630 \times 1000 /(900 \times 254)=2.756 \mathrm{MPa}\)
\(f_{c d}=\alpha_{\mathrm{cc}} f_{\mathrm{ck}} / \mathrm{y}_{\mathrm{c}}=1 \times 30 / 1.5 \quad=20 \mathrm{MPa}\)
\(v_{\text {Rd.max }}=0.3 f_{c d}\left(1-\left(f_{c k} / 250\right)\right)=0.3 \times 20(1-(30 / 250))=5.28 \mathrm{MPa}\)
check if \(\mathrm{V}_{\text {ED } 0} \leq V_{\text {Rd. } \max } \quad 2.756 \mathrm{MPa} \leq 5.28 \mathrm{MPa} \quad\) OK!

\section*{Shear at control perimeter at 2d}
\(\mathrm{u}_{1}=3 \times 300+\pi \times(2 \times 254)\)
\(=2496 \mathrm{~mm}\)
(note: any holes within \(6 d\) need to be allowed for)

Shear at the control perimeter without reinforcement
\[
\begin{array}{ll}
C_{\text {Rd.c }}=0.18 / y_{\mathrm{c}}=0.18 / 1.5 & =0.12 \\
k=1+\sqrt{ }(200 / \mathrm{d})=1+\sqrt{ }(200 / 254) & =1.887 \leq 2 \\
V_{\min }=0.035 k^{3 / 2} f_{c \mathrm{c}}^{1 / 2}=0.035 \times(1.887)^{3 / 2} \times(30)^{1 / 2} & =0.497 \mathrm{MPa} \\
V_{E d 1}=\beta V_{E d} /\left(u_{1} d\right)=630 \times 1000 /(2496 \times 254) & \\
=0.994 \mathrm{MPa}
\end{array}
\]

Consider reinforcement over \(300+6 \times 254=1.824 \mathrm{~m}\) width in both directions from centre of column.

Using H16 @ 150c/c both directions = \(1340.41 \mathrm{~mm}^{2} / \mathrm{m}\)
T1 \& T2
\[
\begin{gathered}
\boldsymbol{\rho}_{\mathrm{I}}=\sqrt{ }\left(\left(\mathrm{A}_{\text {sly }} /\left(\mathrm{b} \mathrm{~d}_{\mathrm{y}}\right) \times \mathrm{A}_{\text {sl| }} /\left(\mathrm{b} \mathrm{~d}_{z}\right)\right)=\sqrt{ }(1340.41 /(1000 \times 262) \times 1340.41 /(1000 \times 246))=\right. \\
\quad=0.00528<0.02 \\
V_{\text {Rd } . c}=C_{\text {Rd.c }} k\left(100 \boldsymbol{\rho}_{\mathrm{I}} f_{\text {ck })}\right)^{1 / 3}=0.12 \times 1.887(100 \times 0.00528 \times 30)^{1 / 3} \quad=0.569 \mathrm{MPa}
\end{gathered}
\]
\begin{tabular}{llll} 
check & \(v_{\text {Rd.c }} \geq v_{\text {min }}\) & \(0.569 \geq 0.497\) & Ok! (use largest value) \\
check & \(v_{\text {ED } 1}<v_{\text {Rd.c }}\) & \(0.994>0.569\) & Shear reinforcement required \\
check & \(v_{E D ~} 1 \leq 2 v_{\text {Rd.c }}\) & \(0.928 \leq 1.138\) & Below \(2 v_{\text {Rd.c }}\) limitation
\end{tabular}
\(U_{\text {out required }}=\beta V_{\text {Ed }} /\left(V_{\text {Rd.c }} d\right)=1.4 \times 450 \times 1000 /(0.569 \times 254) \quad=4362 \mathrm{~mm}\) (note: any holes within \(6 d\) need to be allowed for)

\section*{Shearail Layout - Spiral/Circular Pattern}
\(0.75 d=190.5 \mathrm{~mm}\)
300/2 = \(150 \mathrm{~mm} \quad\) therefore: position rail central about column face in each direction hence \(g_{2}=150 \mathrm{~mm}\)
\(U_{\text {out required }}=4362 \mathrm{~mm}\)
\(\mathrm{e}_{1}=300-150 \quad=150 \mathrm{~mm}\)
\(e=(4362-2 \times 150) / 6\)
\(=677 \mathrm{~mm}\)
\(g=1.932 e=1.932 \times 677\)
\(=1308 \mathrm{~mm}\)
\(g_{1}=g-1.553 d-g_{2}=1308-1.553 \times 254-150\)
\(=764 \mathrm{~mm}\)
\(1^{\text {st }}\) stud from column face \(=0.5 d=127 \mathrm{~mm}\)
distance of \(1^{\text {st }}\) to last stud \(=764-125=639\) say \(4 @ 160 \mathrm{~mm}<.75 d=190.5 \mathrm{~mm}\)
Maximum stud distances on perimeter \(\left(s_{t} 1.5\right)=1.5 d=381 \mathrm{~mm} \quad \& \quad\left(s_{t}\right.\) last \()=2.0 \mathrm{~d}=508 \mathrm{~mm}\)

\(V_{\mathrm{Ed} 1}=\beta V_{\mathrm{Ed}} /\left(u_{1} d\right)=630 \times 1000 /(2496 \times 254)\)
\[
=0.9938 \mathrm{MPa}
\]
\[
f_{\mathrm{ywd} \text {.ef }}=250+0.25 \mathrm{~d}=250+0.25 \times 254
\]
\[
f_{\mathrm{ywd}}=\left(f_{\mathrm{y}} / 1.15\right)=500 / 1.15 \quad=434.78 \mathrm{~N} / \mathrm{mm}^{2}>313.5 \text { ok! }
\]
--- from earlier setting out: spacing rules are less then, \(1.5 d\) within \(2 d \& 2 d\) at the forth stud.

Check this example for confirmation only:
Distance to \(1^{\text {st }}\) stud \(=\left(150 / \cos 30^{\circ}\right)+125 \quad=298.2 \mathrm{~mm}\)
length to \(3^{\text {rd }}\) stud from column face \(=2 \times 160+298.2=618.2 \mathrm{~mm}\)
length to last stud from column face \(=4 \times 160+298.2=938.2 \mathrm{~mm}\)
\(s_{t} 1.5=\sqrt{ }\left(618.2^{2}+618.2^{2}-2 \times 618.2 \times 618.2 \times \cos 30^{\circ}\right) \quad=320.0 \mathrm{~mm}<1.5 \mathrm{~d}\)
\(s_{\text {t last }}=\sqrt{ }\left(938.2^{2}+938.2^{2}-2 \times 938.2 \times 938.2 \times \cos 30^{\circ}\right) \quad=485.6 \mathrm{~mm}<2.0 \mathrm{~d}\)

\section*{Shear at the control perimeter with reinforcement}
\(A_{\text {sw.min }}=0.08 s_{t} s_{r} \sqrt{ } f_{c k} /\left(1.5 f_{y k}\right)=0.08 \times 165 \times 410.6 \sqrt{ } 30 /(1.5 \times 500)=39.6 \mathrm{~mm}^{2}\)
\(A_{s w}=\left(v_{E d 1}-0.75 v_{\text {Rd.c. }}\right) u_{1} s_{r} /\left(1.5 f_{y w d . e f}\right.\) rail no. \()\)
\(A_{s w}=(0.994-0.75 \times 0.569) \times 2496 \times 160 /(1.5 \times 313.5 \times 7)=\) \(=68.8 \mathrm{~mm}^{2} \rightarrow\) stud dia \(=10 \mathrm{~mm}\left(A=78.54 \mathrm{~mm}^{2}\right)\)

Provide 7 No 10-5-240-890 Spacing: 125/160/160/160/160/125 (549.7 mm²) 35 Studs total


\section*{Rail Layout}

7 No 10-5-240-890 Spacing: 125/160/160/160/160/125 (549.7 mm²) 35 Studs total

\section*{12. Example calculation - Corner condition}

\section*{Data}

Slab depth \(h=275 \mathrm{~mm}\)
September 2010
Load \(V_{E D}=215 \mathrm{kN}\)
(load reduced to produce a working calculation
Cover \(=30 \mathrm{~mm}\) (top and bottom)
following an amendment to the National Annex)
Reinforcement T1 \& T2 = H16 @ 150c/c
Compressive strength of concrete \(f_{c k}=30 \mathrm{MPa}\)
a. Spiral/Circular Pattern.

Internal column \(\quad \beta=1.5 \quad\) (unless advised otherwise by the Project Engineer).
\begin{tabular}{ll}
\(d=275-30-16 / 2-16 / 2\) & \(=229 \mathrm{~mm}\) \\
\(d_{y}=275-30-16 / 2\) & \(=237 \mathrm{~mm}\) \\
\(d_{z}=275-30-16-16 / 2\) & \(=221 \mathrm{~mm}\)
\end{tabular}

\section*{Shear at the column face}
\begin{tabular}{|c|c|}
\hline \[
u_{0}=2 \times 300 \quad\left(1.5 \mathrm{~d}=381 \text { therefore use } \mathrm{C}_{1}\right)
\]
(note: any holes within 6d need to be allowed for) & \(=600 \mathrm{~mm}\) \\
\hline \(\beta V_{E D}=1.5 \times 215\) & \(=322.5 \mathrm{kN}\) \\
\hline \(V_{E D O}=\beta V_{E d} /\left(u_{0} d\right)=322.5 \times 1000 /(600 \times 229)\) & \(=2.347 \mathrm{MPa}\) \\
\hline \(f_{c d}=\alpha_{c c} f_{c k} / y_{c}=1 \times 30 / 1.5\) & \(=20 \mathrm{MPa}\) \\
\hline \(v_{\text {Rd.max }}=0.3 f_{c d}\left(1-\left(f_{c k} / 250\right)\right)=0.3 \times 20(1-(30 / 250))\) & \(=5.28 \mathrm{MPa}\) or \\
\hline check if \(\mathrm{V}_{\text {ED } 0} \leq V_{\text {Rd.max }} \quad 2.347 \mathrm{MPa} \leq 5.28 \mathrm{MPa}\) & OK! \\
\hline
\end{tabular}

\section*{Shear at control perimeter at 2d}
\(\mathrm{u}_{1}=2 \times 300+\pi \times(2 \times 229) / 2\)
\(=1320 \mathrm{~mm}\)
(note: any holes within \(6 d\) need to be allowed for)

Shear at the control perimeter without reinforcement
\begin{tabular}{ll}
\(C_{\text {Rd.c }}=0.18 / y_{\mathrm{c}}=0.18 / 1.5\) & \(=0.12\) \\
\(k=1+\sqrt{ }(200 / \mathrm{d})=1+\sqrt{ }(200 / 229)\) & \(=1.935 \leq 2\) \\
\(V_{\text {min }}=0.035 k^{3 / 2} f_{\mathrm{ck}}^{1 / 2}=0.035 \times(1.935)^{3 / 2} \times(30)^{1 / 2}\) & \(=0.516 \mathrm{MPa}\) \\
\(V_{E d d}=\beta V_{E d} /\left(u_{1} d\right)=322.5 \times 1000 /(1320 \times 229)\) & \(=1.067 \mathrm{MPa}\)
\end{tabular}

Consider reinforcement over \(300+3 \times 229=0.987 \mathrm{~m}\) width in both directions from centre of column.

Using H16 @ 150c/c both directions \(=1340.41 \mathrm{~mm}^{2} / \mathrm{m}\)
T1 \& T2
\(\rho_{I}=\sqrt{ }\left(\left(A_{\text {sly }} /\left(b_{y}\right) \times A_{\text {slz }} /\left(b d_{z}\right)\right)=\sqrt{ }(1340.41 / 237 \times 1340.41 / 221) / 1000=\right.\) \(=0.00586<0.02\)
\(v_{\text {Rd. } C}=C_{\text {Rd.c }} k\left(100 \rho, f_{c k}\right)^{1 / 3}=0.12 \times 1.935(100 \times 0.00586 \times 30)^{1 / 3} \quad=0.604 \mathrm{MPa}\)
\begin{tabular}{llll} 
check if & \(v_{\text {Rd.c }} \geq v_{\text {min }}\) & \(0.604 \geq 0.516\) & Ok! (use largest value) \\
check if & \(V_{E D ~} 1<v_{\text {Rd.c }}\) & \(1.067>0.604\) & Shear reinforcement required \\
check & \(V_{E D ~} 1 \leq 2 v_{\text {Rd.c. }}\) & \(1.067 \leq 1.208\) & Below \(2 v_{\text {Rd.c }}\) limitation
\end{tabular}
\(U_{\text {out required }}=\beta V_{\text {Ed }} /\left(V_{\text {Rd.c.c }} d\right)=1.5 \times 215 \times 1000 /(0.604 \times 229) \quad=2331.6 \mathrm{~mm}\)
(note: any holes within \(6 d\) need to be allowed for)

\section*{Shearail Layout - Spiral/Circular Pattern}
\(0.75 d=171.75 \mathrm{~mm}\)
\(300 / 2=150 \mathrm{~mm}\) therefore: position rail central about column face in each direction
hence \(g_{2}=150 \mathrm{~mm}\)
\(U_{\text {out required }}=2331.6 \mathrm{~mm}\)
\(e_{1}=(300-150) \quad=150 \mathrm{~mm}\)
\(e_{2}=(300-150)\)
\(=150 \mathrm{~mm}\)
\(e=\left(U_{\text {out }}-e_{1}-e_{2}\right) / 3=(2331.6-150-150) / 3=2031.6 / 3\)
\(=677.2 \mathrm{~mm}\)
\(g=1.932 e=1.932 \times 677.2\)
\(g_{1}=g-1.553 d-g_{2}=1308.36-1.533 \times 229-150\)
\(=1308.36 \mathrm{~mm}\)
\(=807.3 \mathrm{~mm}\)
say 110 mm
\(1^{\text {st }}\) stud from column face \(=0.5 d=114.5 \mathrm{~mm}\)
distance of \(1^{\text {st }}\) to last stud \(=807.3-110=797.3\) say \(5 @ 160 \mathrm{~mm}<0.75 d=171.75 \mathrm{~mm}\)
Maximum stud distances on perimeter \(\left(s_{t} 1.5\right)=1.5 \mathrm{~d}=343.5 \mathrm{~mm} \&\left(s_{t}\right.\) last \()=2.0 \mathrm{~d}=458 \mathrm{~mm}\)

\(f_{y w d . e f}=250+0.25 d=250+0.25 \times 229\)
\(f_{y w d}=\left(f_{y} / 1.15\right)=500 / 1.15\) \(=434.78 \mathrm{~N} / \mathrm{mm}^{2}>307.25 \mathrm{ok}!\)

Check standard spacing less then 1.5 d within 2 d from column face.
Distance to \(1^{\text {st }}\) stud \(=\left(150 / \cos 30^{\circ}\right)+110 \quad=283 \mathrm{~mm}\)
length to \(3^{\text {rd }}\) stud from column face \(=2 \times 160+283=603 \mathrm{~mm}\)
\(s_{t 3}=\sqrt{ }\left(603^{2}+603^{2}-2 \times 603 \times 603 \times \cos 30^{\circ}\right) \quad=312 \mathrm{~mm}<1.5 \mathrm{~d}\)
length to \(4^{\text {th }}\) stud from column face \(=3 \times 160+283\)
\(s_{t} 4=\sqrt{ }\left(763^{2}+763^{2}-2 \times 763 \times 763 \times \cos 30^{\circ}\right)\)
\(=307.25 \mathrm{~N} / \mathrm{mm}^{2}\)
\(=763 \mathrm{~mm}\)
\(=395 \mathrm{~mm}<2.0 \mathrm{~d}\)
length to \(5^{\text {th }}\) stud from column face \(=4 \times 160+283\)
\(S_{t 5}=\sqrt{ }\left(923^{2}+923^{2}-2 \times 923 \times 923 \times \cos 30^{\circ}\right)\) (provide one splitter rail from the \(5^{\text {th }}\) stud)
\(=923 \mathrm{~mm}\)
\(=478 \mathrm{~mm}>2.0 \mathrm{~d}\)

\section*{Shear at the control perimeter with reinforcement}
\(A_{s w . \min }=0.08 s_{t} s_{r} \sqrt{ } f_{c k} /\left(1.5 f_{y k}\right)=0.08 \times 160 \times 404 \sqrt{ } 30 /(1.5 \times 500)=37.8 \mathrm{~mm}^{2}\)
\(A_{S w}=\left(v_{E d 1}-0.75 v_{R d . c}\right) u_{1} s_{r} /\left(1.5 f_{y w d . \text { ef }}\right.\) rail no. \()\)
\(A_{s w}=(1.067-0.75 \times 0.604) \times 1320 \times 160 /(1.5 \times 313.5 \times 4)=\) \(=68.94 \mathrm{~mm}^{2} \rightarrow\) stud dia \(=10 \mathrm{~mm}\left(\mathrm{~A}=78.54 \mathrm{~mm}^{2}\right)\)


\section*{Rail Layout}

4 No 10-6-215-1020 Spacing: 110/160/160/160/160/160/110
3 No 10-2-215-380 Spacing: 110/160/110
30 Studs total

\section*{Alternative Shearail Layout - Spiral/Circular Pattern}

Try: 5 spurs
\(A_{s w}=(1.067-0.75 \times 0.604) \times 1320 \times 160 /(1.5 \times 313.5 \times 5)=\)
\(=55.15 \mathrm{~mm}^{2} \rightarrow\) stud dia \(=10 \mathrm{~mm}\left(\mathrm{~A}=78.54 \mathrm{~mm}^{2}\right)\)


\section*{Rail Layout}

5 No 10-6-215-1020 Spacing: 110/160/160/160/160/160/160/160/160/110 (314.06 \(\mathrm{mm}^{2}\) )
30 Studs total

\section*{Holes/Penetrations in the slab}

If the shortest distance between the perimeter of the loaded area and the edge of the opening does not exceed 6d, that part of the control perimeter contained between two tangents drawn to the outline of the opening from the centre of the loaded area is considered to be ineffective.
as quoted in clause 6.4.2 (3)


When \(I_{1}\) is less than or equal to \(I_{2}\)


When \(I_{1}\) is greater than \(I_{2}\)

When the hole is inside the stud arrangement the rails should be cut back and additional rails added either side of the hole.


Note: the studs shown in red cannot be used to calculate the steel area provided; this may result in larger diameter studs being required, unless full length splitter rails are used. The effected rail should be cut back to conform the spacing requirements.

\section*{Shearail Design Manual to EC2}

\section*{14. Enhanced Stud Spacing 'October 2010}

\section*{Rectangular / Square Columns.}

When considering the results from the full scale testing, it is possible to increase the stud spacing to a maximum of 3.5 d for studs outside of the 2d perimeter.

Using the standard set out geometry the maximum distance on the \(8^{\text {th }}\) stud is 3.366 d which is within the 3.5 d tested.

Provide intermediate rails as below, when more than 8 perimeters of reinforcement is required ( 8 studs on a rail).

If the standard rail/stud setting out pattern is not possible additional manual spacing checks will required to maintain spacing rules
- 1.5d between studs inside the 2d perimeter (U1)
- 3.5 d between studs after the 2d perimeter.

Provide intermediate corner rails when more than 8 perimeters of reinforcement are required.

\section*{Enhanced Stud Spacing - Circular Columns.}

Calculate the position of the perimeter \(\mathrm{U}_{\text {out }}\) \(\cup_{\text {out.ef }}\)

As normal, the rails spiral around column at an angle between \(30^{\circ}\) \(45^{\circ}\) giving equal lengths around \(U_{\text {out }}\) for ' \(e\) ', resulting with a layout of 8 to 12 main rails.

The same prefabricated rail can be used throughout the layout.

General rules for a Spiral/Circular Pattern
\(0.5 \mathrm{~d}^{\star *}\) Max. \(\mathrm{g}_{2}^{*}\)
* Denotes: \(\mathrm{g}^{2}=\) Column diameter / 2
** Denotes: 0.5 d may be reduced to 0.3 d position the last stud from column face \(=g_{1}\)
\[
\begin{equation*}
U_{\text {out }}=\beta V_{\text {Ed }} /\left(V_{\text {Rd.c }} d\right) \tag{6.54}
\end{equation*}
\]

The number of rail spurs depends on the spacing rules inside 2d perimeter (less than or equal to 1.5 d ) and on the last stud spacing (less than or equal to 3.5 d ).

As \(U_{\text {out }}\) is a polygon of equal sides: the number of sides \(=\) the number of main rail spurs.
\(\mathrm{e}_{3} \leq 3.5 \mathrm{~d}\) (without intermediate rails) or \(\mathrm{e}_{3} \leq 7 \mathrm{~d}\) (with intermediate rails)

\(e_{3}=\boldsymbol{e}-2 e_{2} \quad\) where \(e_{2}=1.5 d \operatorname{Tan} F^{\circ}\)
\(F^{\circ}=180 /\) No. of spurs
(sides or main spurs)
Therefore try 8 spurs (as a standard layout) increasing the number of spurs until \(e_{3} \leq 3.5 d\) or \(e_{3} \leq\) \(7 d\) with intermediate rails.
\(g=\left(e / \sin E^{\circ}\right) x \sin \left(\left(180^{\circ}-E^{\circ}\right) / 2\right)\)
\[
\begin{aligned}
\text { where } & E^{\circ}=360 / \text { No. of spurs } \\
g_{1}=\boldsymbol{g - g}-g_{2}-g_{3} & \text { where } \\
& g_{2}=\operatorname{column} \text { diameter } / 2 \\
& g_{3}=1.5 d / \cos F^{\circ}
\end{aligned}
\]
\(1^{\text {st }}\) stud from column face \(=0.3 d\) min. to \(0.5 d\) max.
stud spacing \(=\left(g_{1}-\right.\) distance to \(1^{\text {st }}\) stud \() /(\) number of stud on a rail -1\()\)
(less than or equal to \(0.75 d\) )

\section*{Shearail Design Manual to EC2}

```

